Cho tam giác ABC có AB bé hơn AC , kẻ tia phân giác AD (D thuộc BC) , KẺ DM vuông góc AB tại M , DN vuông góc AC tại N a) chứng minh tam giác ADM bằng tam giác ADN b) so sánh BD và CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét ΔADM và ΔADN có:
AD chung
MAD=NAD(góc)
AMD=AND=90(góc)
⇒ΔADM=ΔADN(cạnh huyền--góc nhọn)
a; Xét ΔDAB vuông tại A và ΔDMB vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔDAB=ΔDMB
b: D nằm giữa A và C
=>AD<AC
c: Xét ΔBKC có
CA,KM là đường cao
CA cắt KM tại D
=>D là trực tâm
=>BD vuông góc KC tại N
Xet ΔBKC có
BN vừa là phân giác, vùa là đường cao
=>ΔBKC cân tại B
a. Vì AD là tia phân giác góc A
=> BAD = BAC
Xét tam giác BAD và tam giác BAC:
AB chung
BAD = CAD (cmt)
AB = AC( tam giác ABC cân tại A)
=> tam giác BAD = tam giác CAD (cgc)
b. Vì tam giác BAD = tam giác CAD (cmt)
=> BD = CD(hai góc tương ứng) (đpcm)
c. Vì DM ⊥ AB (M ∈ AB)
=> M = 90o
Vì DN ⊥ AC (N ∈ AC)
=> N = 90o
Xét tam giác BDM và tam giác CDN :
M = N (=90o)
BD = CD (cmb)
B = C(tam giác ABC cân tại A)
=>tam giác BDM = tam giác CDN(ch-gn)(đpcm)
=> DM = DN (2 cạnh tương ứng)
d. Xét tam giác AMD và tam giác AND:
DM = DN(cmc)
M = N(=90o)\
AD chung
=> tam giác AMD = tam giác AND (ch-cgv) (đpcm)
a: Xét ΔADB và ΔADC có
AB=AC
AD chung
BD=CD
Do đó: ΔADB=ΔADC
b: Ta có: ΔABD=ΔACD
=>\(\widehat{BAD}=\widehat{CAD}\)
=>AD là phân giác của góc BAC
c: Xét ΔADM vuông tại M và ΔADN vuông tại N có
AD chung
\(\widehat{DAM}=\widehat{DAN}\)
Do đó: ΔADM=ΔADN
=>AM=AN
Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
nên MN//BC
a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔBAD=ΔBMD
b: AD=DM
DM<DC
=>AD<DC
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A