Có 2 loại quặng sắt. quặng loại A chứa 60%, quặn loại B chứa 50%người ta trộn 1 lượng quặng A với 1 lượng quặng B thì được 1 hỗn hợp \(\frac{8}{15}\)sắt . Nếu lúc đầu lấy tăng 10 tấn quăng A và giảm 10 tấn quặng b thì được hỗn hợính khối lượng mỗi loại đem trộn lúc đầu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi khối lượng mỗi quặng là a và b (tấn)
ta có: \(\frac{70a+40b}{a+b}=60\Leftrightarrow\frac{30a}{a+b}+40=60\Leftrightarrow30a=20\left(a+b\right)\Leftrightarrow10a=20b\Leftrightarrow a=2b\)
lại có\(\frac{70\left(a-8\right)+40\left(b-2\right)}{\left(a-8\right)+\left(b-2\right)}=58\Leftrightarrow\frac{30\left(a-8\right)}{a-8+b-2}+40=58\Leftrightarrow30\left(a-8\right)=18\left(a+b-10\right)\)
\(\Leftrightarrow30a-240=18a+18b-180\Leftrightarrow12a-18b=60\)
thay a=2b vào phương trình trên ta có
\(12\times2b-18b=60\Leftrightarrow24b-18b=60\Leftrightarrow6b=60\Leftrightarrow b=10\Rightarrow a=20\)
Vậy khối lượng quặng 1 là 20 tấn, khối lượng quặng 2 là 10 tấn
gọi x,y là số tấn quặng sắt loại I và loại II đã trộn với nhau lúc ban đầu
khi đó
phần trăm quặng sắt của hỗn hợp trên là \(\frac{0.7x+0.4y}{x+y}=0.6\)
phần trăm của quặng sắt của hỗn hợp sau là \(\frac{0.7\left(x+5\right)+0.4\left(y-5\right)}{x+5+y-5}=0.65\Leftrightarrow\frac{0.7x+0.4y+0.15}{x+y}=0.65\)
hay \(\frac{0.7x+0.4y}{x+y}+\frac{1.5}{x+y}=0.65\Rightarrow\frac{1.5}{x+y}=0.05\Rightarrow x+y=30\Rightarrow0.7x+0.4y=18\)
từ đây ta giải hệ \(\hept{\begin{cases}x+y=30\\0.7x+0.4y=18\end{cases}\Leftrightarrow\hept{\begin{cases}x=20\\y=10\end{cases}}}\)
Gọi khối lượng quặng loại thứ nhất là x tấn ,loại thứ 2 là y tấn ,x>0 ; y>0
ta có hệ phương trình :\(\hept{\frac{\frac{72}{100}x+\frac{58}{100}y=\frac{62}{100}\left(x+y\right)}{\frac{72}{100}\left(x+15\right)+\frac{58}{100}\left(y+15\right)=\frac{63,25}{100}\left(x+y+30\right)}}\)
hay : \(\hept{\begin{cases}5x-2y=0\\5\left(x+15\right)=3\left(y+15\right)\end{cases}}\)
giải hệ phương trình ta đc: (x;y) =(12;30)
vậy khối lượng loại thứ nhất là 12 tấn , loai thứ 2 là 30 tấn
Gọi khối lượng quặng loại thứ nhất là x ( tấn), loại thứ hai là y (tấn)
Điều kiện: x > 0; y > 0
Lượng sắt nguyên chất có trong mỗi loại quặng bằng lượng sắt có trong hỗn hợp ta có phương trình:
Thêm mỗi loại quặng 15 tấn ta được hỗn hợp chứa 63,25% sắt, ta có phương trình:
Ta có hệ phương trình:
Cả hai giá trị x = 12; y = 30 thỏa mãn điều kiện bài toán.
Vậy loại quặng thứ nhất có 12 tấn, loại quặng thứ hai có 30 tấn.
%mFe ( trong A ) =
=> mFe ( trong A ) =
Vậy trong 1 tấn quặng A có chứa 420 kg Fe
%mFe ( trong B ) =
=> mFe ( trong B ) =
Vậy trong 1 tấn quặng B có chứa 504 kg Fe
%mFe2O3 =
%mFe3O4 =
=> mFe( quặng A trong C ) =
mFe ( quặng B trong C ) =
=> mFe ( trong C ) = 126 + 352,8 = 478,8 (kg)