K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2017

đề sai:

5 tháng 2 2017

\(ax^{^2}⋮5\Rightarrow a⋮5\)

\(bx^2⋮5\Rightarrow b⋮5\)

\(cx⋮5\Rightarrow c⋮5\)

Mà đa thức chia hết cho 5 nên d\(⋮\)5

27 tháng 11 2017

sai rồi nhosk ạ

28 tháng 3 2021

F(0)=d⇒d⋮5F(0)=d⇒d⋮5

F(1)=a+b+c+d⋮5⇒a+b+c⋮5F(1)=a+b+c+d⋮5⇒a+b+c⋮5

F(−1)=−a+b−c+d⋮5⇒−a+b−c⋮5F(−1)=−a+b−c+d⋮5⇒−a+b−c⋮5

⇒(a+b+c)+(−a+b−c)⋮5⇒(a+b+c)+(−a+b−c)⋮5

⇒2b⋮5⇒b⋮5⇒2b⋮5⇒b⋮5

⇒a+c⋮5

21 tháng 3 2015

Để ​(ax3 + bx2 + cx + d) chia hết cho 5 thì 

axchia hết cho 5 

và bx2 chia hết cho 5 

và cx chia hết cho 5 

và axchia hết cho 5 (dùng ngoặc và) 

=> a,b,c,d đề phải chia hết cho 5

theo tôi là vậy

22 tháng 3 2015

ta có: x là số nguyên và x chia hết cho 5 ( trong toán học bạn phải viết kí hiệu của chia hết ra nhang)

=> ax^3 chia hết cho 5

bx^2 chia hết cho 5

cx chia hết cho 5

d chia hết cho 5

=>a,b,c,d đều chia hết cho 5

 

27 tháng 11 2021

\(2,\\ PT\Leftrightarrow6x^2+9y^2-\left(x^2+y^2\right)=20412\\ \text{Mà }20412⋮3;6x^2+9y^2⋮3\\ \Leftrightarrow x^2+y^2⋮3\Leftrightarrow x^2⋮3;y^2⋮3\Leftrightarrow x⋮3;y⋮3\)

Đặt \(\left\{{}\begin{matrix}x=3a\\y=3b\end{matrix}\right.\left(a,b\in Z\right)\Leftrightarrow5\left(3a\right)^2+8\left(3b\right)^2=20412\)

\(\Leftrightarrow9\left(5a^2+8b^2\right)=20412\\ \Leftrightarrow5a^2+8b^2=2268\)

Mà \(2268⋮3\Leftrightarrow5a^2+8b^2⋮3\Leftrightarrow a^2⋮3;b^2⋮3\Leftrightarrow a⋮3;b⋮3\)

Đặt \(\left\{{}\begin{matrix}a=3c\\b=3d\end{matrix}\right.\left(c,d\in Z\right)\Leftrightarrow9\left(5c^2+8d^2\right)=2268\Leftrightarrow5c^2+8d^2=252\)

Mà \(252⋮3\Leftrightarrow5c^2+8d^2⋮3\Leftrightarrow c^2⋮3;d^2⋮3\Leftrightarrow c⋮3;d⋮3\)

Đặt \(\left\{{}\begin{matrix}c=3k\\d=3q\end{matrix}\right.\left(k,q\in Z\right)\Leftrightarrow9\left(5k^2+8q^2\right)=252\Leftrightarrow5k^2+8q^2=28\)

\(\Leftrightarrow5k^2=28-8q^2\ge0\Leftrightarrow q^2\le\dfrac{28}{8}=3,5\\ \text{Mà }q\in Z\\ \Leftrightarrow-3\le q^2\le3\Leftrightarrow-1\le q\le1\)

\(\forall q=0\Leftrightarrow k^2=\dfrac{28}{5}\left(ktm\right)\\ \forall q=\pm1\Leftrightarrow k=\pm2\\ \Leftrightarrow\left(c;d\right)=\left(6;3\right);\left(-6;-3\right);\left(-6;3\right);\left(6;-3\right)\\ \Leftrightarrow\left(a;b\right)=\left(18;9\right)\left(-18;-9\right);\left(-18;9\right);\left(18;-9\right)\\ \Leftrightarrow\left(x;y\right)=\left(54;27\right);\left(-54;-27\right);\left(54;-27\right);\left(-54;27\right)\)

1 tháng 3 2018

P ( x ) = ax^3 + bx^2 + cx + d 

Ta có : P( 0 ) chia hết cho 5 

P ( 0 ) = a . 0 + b . 0 + c. 0 + d = d chia hết cho 5 

P ( 1 ) chia hết cho 5

P ( 1 ) = a . 1^3 + b . 1^2 + c . 1 + d = a + b + c + d chia hết cho 5  ( 1 ) 

mà d chia hết cho 5 => a + b + c chia hết cho 5 

P ( - 1 ) = a . ( -1)^3 + b . ( -1)^2 + c . - 1 + d 

           =       -a + b - c + d ( 2 ) 

Từ ( 1 ) và ( 2 ) : 

P ( 1 ) + P ( -1 ) = a + b + c + d  +  -a + b - c + d 

                        =     2b + 2d chia hết cho 5 

mà 2d chia hết cho 5 => 2b chia hết cho 5 => b chia hết cho 5 => a + c chia hết cho 5 => 2(a + c ) chia hết cho 5 

P ( 2 ) = a . 2^3 + b . 2^2 + c. 2 + d

          =  8a + 2b + 2c + d 

          =  2a + 6a + 2b + 2c + d 

          = 2 ( a + c ) + 6a + 2b + d chia hết cho 5 

Mà 2 ( a + c ) chia hết cho 5 , 2b chia hết cho 5 , d chia hết cho 5

=> 6a chia hết cho 5

=>   a chia hết cho 5

Mà a + c chia hết cho 5 => c chia hết cho 5

Vậy a, b , c , d chia hết cho 5

mình nha !!! 
Học giỏi !!! 

11 tháng 3 2017

Cách giải bài này :

Vì Q(x) chia hết cho 5 với mọi x nguyên, nên em chọn 1 số giá trị thích hợp của x để đưa đến các pt nhiều ẩn

Ví dụ Q(0) = d chia hết cho 5; Q(1) = a +b +c +d, vì d chia hết cho 5 => a +b +c chia hết cho 5 (1)

Q(-1) = -a +b -c +d, vì d chia hết cho 5 => -a +b -c chia hết cho 5 (2)

Cộng từ vế (1) và (2) đc 2b chia hết cho 5 => b chia hết cho 5 vì (2,5) = 1

Trừ từng vế (1) và (2) ....

Em tính thêm Q(3) nữa là đc

11 tháng 3 2017

787586