Cho a,b,c là các số dương,chứng minh rằng \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}< 2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
Do \(a,b,c\) nguyên dương nên \(\left(a,b,c\right)=\left(0;0;0\right),\left(0;0;1\right);\left(0;1;1\right);\left(1;1;1\right)\)
Thử vào biểu thức bên trái đều thấy nó có giá trị nhỏ hơn hoặc bằng 2.
Do a < b < c < d < m < n
=> a + c + m < b + d + n
=> 2 × (a + c + m) < a + b + c + d + m + n
=> a + c + m / a + b + c + d + m + n < 1/2 ( đpcm)
Do a < b < c < d < m < n
=> a + c + m < b + d + n
=> 2 × (a + c + m) < a + b + c + d + m + n
=> a + c + m / a + b + c + d + m + n < 1/2 ( đpcm)
Ta có \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\Leftrightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>1\)
Ta lại có bất đẳng thức \(\frac{a}{b}< \frac{a+c}{b+c}\)
Áp dụng ta có \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\Leftrightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
Vậy \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
Ta có aa+b+bb+c+cc+a>aa+b+c+ba+b+c+ca+b+c=a+b+ca+b+c=1⇔aa+b+bb+c+cc+a>1aa+b+bb+c+cc+a>aa+b+c+ba+b+c+ca+b+c=a+b+ca+b+c=1⇔aa+b+bb+c+cc+a>1
Ta lại có bất đẳng thức ab<a+cb+cab<a+cb+c
Áp dụng ta có aa+b+bb+c+cc+a<a+ca+b+c+b+aa+b+c+c+ba+b+c=2(a+b+c)a+b+c=2⇔aa+b+bb+c+cc+a<2aa+b+bb+c+cc+a<a+ca+b+c+b+aa+b+c+c+ba+b+c=2(a+b+c)a+b+c=2⇔aa+b+bb+c+cc+a<2
Vậy 1<aa+b+bb+c+cc+a<2
ta có:
a/a+b>a/a+b+c
b/b+c>b/a+b+c
c/a+c>c/a+b+c
cộng vế theo vế ta có
a/a+b +b/b+c +c/c+a > a+b+c / a+b+c =1
=>a/a+b +b/b+c +c/c+a >1 (*)
lại có
a/a+b< a+c/a+b+c
b/b+c < b+a / a+b+c
c/c+b < c+b/a+b+c
cộng vế theo vế ta có
a/a+b + b/b+c +c/c+a < 2(a+b+c)/ a+b+c
vì a,b,c là các số dương nên a/a+b + b/b+c +c/c+a < 2 (**)
từ (*) và (**) => ĐPCM
mik chắc chắn bài này chuẩn đúng 100% nhớ cho mik 5 sao nha
Vì a;b;c là các số dương nên \(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{a+c}>\frac{c}{a+b+c}\)
=>\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)(1)
Ta có: a<a+b <=> ac<ac+bc <=> ac+a2+ab<ac+bc+a2+ab
<=> \(a\left(c+a+b\right)< \left(a+b\right)\left(c+a\right)\Leftrightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c}\)
Chứng minh tương tự được : \(\frac{b}{b+c}< \frac{a+b}{a+b+c};\frac{c}{a+c}< \frac{b+c}{a+b+c}\)
=>\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}=2\) (2)
Từ (1) và (2) => đpcm