Cho biểu thức A=\(\frac{3}{n-2}\) a)tìm các số nguyên n để A là phân số
b) Tìm các số nguyên n để a là một số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giúp mik nhoa mik đag cần cảm ơn những câu hỏi của tất cả các bn nhiều
\(A=\frac{3}{n-2}\) la phan so khi \(n-2\ne0\Rightarrow n\ne2\)
\(A=\frac{3}{n-2}\inℤ\Leftrightarrow3⋮n-2\)
\(\Rightarrow n-2\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)
\(A=\frac{3}{n-2}\)
a) Để A là 1 phân số \(\Rightarrow n-2\ne0\Rightarrow n\ne2\)
b) Để A \(\inℤ\Rightarrow3⋮\left(n-2\right)\)
\(\Rightarrow n-2\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow n\in\left\{3;1;5;-1\right\}\)
b) Đề biểu thức A là một số nguyên thì ta có: 3 chia hết cho n-2
( bạn cứ giải theo trình tự như ƯC)
a ) Để A = \(\frac{3}{n-2}\) là phân số thì n - 2 ≠ 0 => n ≠ 2
b ) Để A = \(\frac{3}{n-2}\) là phân số lớn nhất khi n - 2 = 1 => n = 3
a) Ta có :
Để : \(A\text{=}\dfrac{n-2}{n+5}\) là phân số \(\Leftrightarrow A\text{=}mẫu\left(n+5\right)\ne0\)
\(\Leftrightarrow n\ne-5\)
Vậy để A là phân số \(\Leftrightarrow n\ne5\)
b) Ta có : \(A\text{=}\dfrac{n-2}{n+5}\text{=}\dfrac{n+5-7}{n+5}\text{=}\dfrac{n+5}{n+5}-\dfrac{7}{n+5}\text{=}1-\dfrac{7}{n+5}\)
Để : \(A\in Z\Leftrightarrow\dfrac{7}{n+5}\in Z\Leftrightarrow n+5\inƯ\left(7\right)\)
mà \(Ư\left(7\right)\text{=}\left(1;-1;7;-7\right)\)
\(\Rightarrow n\in\left(-4;-6;2;-12\right)\)
\(Vậy...\)
a ) Để \(\frac{3}{n-2}\) là phân số thì n - 2 ≠ 0 => n ≠ 2 => n = { n ∈ Z | n ≠ 2 }
b ) Để \(\frac{3}{n-2}\) là số nguyên thì 3 ⋮ n - 2 => n - 2 ∈ Ư ( 3 ) = { + 1 ; + 3 }
Ta có : n - 2 = 1 => n = 3 ( nhận )
n - 2 = - 1 => n = 1 ( nhận )
n - 2 = 3 => n = 5 ( nhận )
n - 2 = - 3 => n = - 1 ( nhận )
Vậy n = { + 1 ; 3 ; 5 }
a:biểu thức A có tử là 3 thuộc Z
co mau la : n-2
để A là phân số thì mẫu số là n-2 khác 0 suy ra n khác 0+2 suy ra n khác 2
b:để A là số nguyên thì 3 chia hết cho n-2 suy ra n-2 thuộc ước của 3 =[-1;1;-3;3] suy ra n thuộc [1;3;-1;5]
a) Để A là phân số thì n - 3 \(\ne\)0 => n \(\ne\)3
b) Để A là một số nguyên thì 5 \(⋮\)n - 3 => n - 3 \(\in\)Ư(5) = {1; -1; 5; -5}
Lập bảng :
n - 3 | 1 | -1 | 5 | -5 |
n | 4 | 2 | 8 | -2 |
Vậy ...
a,Với \(n\in Z\)Ta có \(3\in Z;n+2\in Z\)
Do đó để \(A=\frac{3}{n+2}\)là phân số thì \(n+2\ne0\Leftrightarrow n\ne-2\)
Vậy với n thuộc Z và n khác -2 thì A là phân số
b;Để A nguyên \(\Leftrightarrow3⋮n+2\Rightarrow n+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{1;-3;1;-5\right\}\)
Vậy.................................
P/s : thêm đk nữa bn ơi :)
Để A là số nguyên
=> 3 chia hết cho n - 2
=> n - 2 thuộc Ư(3) = {-1 ; 1 ; -3 ; 3}
Ta có bảng sau :
Vậy ngoài những số (3 ; 1 ; 5 ; -1) thì A là phân số
để A là số nguyên thì 3 phải chia hết cho n-2=> n-2 thuộc u của 3
U(3)={ -3;-1;1;3 }
ta có bảng sau:
vậy để A là phân số thì n phải khác những số { -1;1;3;5}
vậy để A là số nguyên thì n phải là một trong các số {-1;1;3;5}