K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2017

kho qua a co lam nha 

30 tháng 10 2021

uses crt;

var a:array[1..50]of int64;

i,n,t,max,min:int64;

begin

clrscr;

readln(n);

for i:=1 to n do 

  readln(a[i]);

max:=a[1];

min:=a[1];

t:=0;

for i:=1 to n do 

begin

if max<a[i] then max:=a[i];

if min>a[i] then min:=a[i];

t:=t+a[i];

end;

writeln('Tong la: ',t);

writeln('So lon nhat la: ',max);

write('Vi tri la: ');

for i:=1 to n do

if a[i]=max then write(i:4);

writeln;

writeln('So nho nhat la: ',min);

write('Vi tri la: ');

for i:=1 to n do 

if a[i]=min then write(i:4);

readln;

end.

27 tháng 6 2023

 

    1. 1.Ta sẽ chứng minh bằng phương pháp quy nạp.
    2.  

    Gọi a_n là số thứ n trong dãy số đã cho. Ta sẽ chứng minh rằng không có 6 số liên tiếp trong dãy số đã cho có giá trị là 0, tức là a_i  0 với mọi i sao cho 1  i  6.

    • Với i = 1, 2, 3, 4, 5, ta thấy rằng a_i  0.
    • Giả sử với mọi i sao cho 1  i  k (với k  5), đều có a_i  0. Ta sẽ chứng minh rằng a_(k+1)  0.

    Nếu a_k  0, a_(k+1)  0 do a_(k+1) = chữ số tận cùng của tổng 6 số đứng ngay trước nó, và các số này đều khác 0.

    Nếu a_k = 0, ta xét 5 số đứng trước nó: a_(k-4), a_(k-3), a_(k-2), a_(k-1), a_k. Vì a_k = 0, nên tổng của 6 số này chính là tổng của 5 số đầu tiên, và theo giả thiết quy nạp, không có 5 số liên tiếp trong dãy số đã cho có giá trị là 0. Do đó, a_(k+1)  0.

    Vậy, theo nguyên tắc quy nạp, ta có dãy số đã cho không chứa 6 số liên tiếp bằng 0.

    1. 2. Khi a, b, c là các số nguyên, ta có thể chứng minh bằng phương pháp quy nạp rằng sau hữu hạn bước biến đổi, trong bộ 3 thu được có ít nhất 1 số bằng 0.
    • Với a, b, c bất kỳ, ta có ab, bc, ca  0. Nếu một trong ba số này bằng 0, ta đã tìm được số bằng 0.
    • Giả sử sau k bước biến đổi, trong bộ 3 thu được có ít nhất 1 số bằng 0. Ta sẽ chứng minh rằng sau k+1 bước biến đổi, trong bộ 3 thu được cũng có ít nhất 1 số bằng 0.

    Giả sử trong bộ 3 thu được sau k bước biến đổi, có a = 0. Khi đó, ta chỉ cần chứng minh rằng trong 2 số còn lại, có ít nhất 1 số bằng 0.

    Nếu b = 0 hoặc c = 0, ta đã tìm được số bằng 0.

    Nếu b và c đều khác 0, ta có:

    bc, ca, ab  1

    Do đó, trong 3 số bc, ca, ab, không có số nào bằng 0. Khi đó, ta có:

    b(bc)ca=ab

    Vậy, ta có thể thay bằng b - (b - c) để giảm số lượng biến đổi. Sau đó, ta lại áp dụng phương pháp quy nạp để chứng minh rằng trong bộ 3 thu được sau k+1 bước biến đổi, có

    10:06
Một dãy số tự nhiên được gọi là dãy tăng bội 3 nếu dãy chỉ gồm một số và số đó chia hết cho 3, hoặc dãy gồm các số khác nhau theo thứ tự tăng dần và tổng của các số trong dãy chia hết cho 3.Ví dụ, dãy số: 6 và dãy số: 2, 3, 4 là các dãy tăng bội 3; còn các dãy số: 2, 3, 5, dãy số: 2, 4, 3 và dãy số: 3, 3 không phải là dãy tăng bội 3.1.  Kiểm tra xem dãy số nào dưới đây là dãy tăng...
Đọc tiếp

Một dãy số tự nhiên được gọi là dãy tăng bội 3 nếu dãy chỉ gồm một số và số đó chia hết cho 3, hoặc dãy gồm các số khác nhau theo thứ tự tăng dần và tổng của các số trong dãy chia hết cho 3.

Ví dụ, dãy số: 6 và dãy số: 2, 3, 4 là các dãy tăng bội 3; còn các dãy số: 2, 3, 5, dãy số: 2, 4, 3 và dãy số: 3, 3 không phải là dãy tăng bội 3.

1.  Kiểm tra xem dãy số nào dưới đây là dãy tăng bội 3? Vì sao?

a) Dãy số: 3

b) Dãy số: 3, 5

c) Dãy số: 3, 5, 10

d) Dãy số: 12, 9, 6, 3

e) Dãy số: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60

2.  Hãy tìm tất cả các dãy tăng bội 3 được thành lập bằng cách lấy ra một số tùy ý các số trong 5 số: 3, 5, 6, 9 và 10. Viết các dãy tăng bội 3 tìm được, mỗi dãy trên một dòng, các số trong dãy cách nhau một dấu phẩy.

1
6 tháng 4 2017

a) dãy số: 3 là dãy số tăng bội 3

b) dãy số: 3, 5 Không phải là dãy số tăng bội 3

b) dãy số: 3, 5, 10 là dãy số tăng bội 3

d) dãy số: 12, 9, 6, 3 Không phải là dãy số tăng bội 3

e) dãy số: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60  là dãy số tăng bội 3

25 tháng 4 2021

Làm giúp bài này nhé

 

25 tháng 4 2021