K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2017

Vì \(n\ge2\)

=> Số điểm cho trước có công thức dạng chung là : 2x (với x thuộc N)

Áp dụng vào công thức tính đoạn thẳng , ta có :

\(\frac{2x.\left(2x-1\right)}{2}=x.\left(2x-1\right)=2x^2-x\)

Vậy có tất cả : 2x2 - x đoạn thẳng

Công thức tính là :

\(\frac{n.\left(n-1\right)}{2}\)với n là số điểm cho trước

19 tháng 12 2016

Số đường thẳng phân biệt là : {n.(n-1)}:2

19 tháng 12 2016

bạn có thể trình bày lời giải được ko

 

31 tháng 12 2017

ta có qua 2 điểm ta vẽ được 1 đường thẳng

              3điểm ta vẽ được 2đương thẳng

              n điểm ta vẽ được n(n-1):2 đường thẳng

27 tháng 9 2016

hoc chua

29 tháng 9 2016

dễ xong rùi

 

16 tháng 12 2019

Gọi n điểm đã cho là: \(A_1;A_2;A_3;...;A_n\); n\(\ge\)2.

Vì không có 3 điểm nào thẳng hàng nên :

+) Nối  \(A_1\) với ( n - 1) điểm còn lại ta có: ( n - 1) đường thẳng.

 +) Nối  \(A_2\) với ( n - 1) điểm còn lại ta có: ( n - 1) đường thẳng.

+) Nối  \(A_3\) với ( n - 1) điểm còn lại ta có: ( n - 1) đường thẳng.

...

+) Nối  \(A_3\) với ( n - 1) điểm còn lại ta có: ( n - 1) đường thẳng.

Như chúng ta có: n ( n - 1) đường thẳng

Tuy nhiên mỗi đường thẳng được tính 2 lần (  VD như nối \(A_1\)với \(A_2\)ta có đường thẳng \(A_1\)\(A_2\); còn nối  \(A_2\)với \(A_1\)ta có đường thẳng \(A_2\)\(A_1\); và 2 đường thẳng   \(A_1\)\(A_2\)\(A_2\)\(A_1\) trùng nhau )

=> Do đó số đường thẳng phân biệt là: n ( n - 1) : 2.

25 tháng 4 2019

nhiều nhé