K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: a^3-a=a(a^2-1)

=a(a-1)(a+1)

Vì a;a-1;a+1 là ba số liên tiếp

nên a(a-1)(a+1) chia hết cho 3!=6

=>a^3-a chia hết cho 6

8 tháng 5 2017

ai muốn kết bn với tớ thì hãy click cho tớ nhé

23 tháng 4 2020

Phương Khánh Thực ra là ban đầu mình tính dùng Bunyakovski thẳng luôn nhưng thấy bậc khá cao mà không biết BĐT đó đúng hay sai nên mình đảo a, b, c xuống mẫu để dùng BĐT Bunyakovski thì bậc sẽ thấp hơn.

Và không ngờ sự vô tình đó giúp mình gặp may mắn: Đại lượng abc ở \(\frac{abc\left(a+b+c\right)^3}{ab+bc+ca}\) có thể giản ước cho đại lượng abc ở VP. Bậc của BĐT được hạ thấp và mình cứ thế mà chém:))

22 tháng 4 2020

Áp dụng BĐT Bunyakovski\(,\) ta có: \(\left(a^2b+b^2c+c^2a\right)\left(\frac{1}{b}+\frac{1}{c}+\frac{1}{a}\right)\ge\left(a+b+c\right)^2\)

Do đó: \(VT\ge\frac{\left(a+b+c\right)^3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{abc\left(a+b+c\right)^3}{ab+bc+ca}\ge9abc\)

Bất đẳng thức cuối tương đương: \(\left(a+b+c\right)^3\ge9\left(ab+bc+ca\right)\) \((\ast)\)

Có: \(3=a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\)

\(\therefore\left(ab+bc+ca\right)=\frac{\left(a+b+c\right)^2-3}{2}\)

\((\ast)\) \(\Leftrightarrow\left(a+b+c\right)^3\ge\frac{9}{2}\)\(\Big[(a+b+c)^2-3\Big] \)

\(\Leftrightarrow\frac{1}{2}\left(2a+2b+2c+3\right)\left(a+b+c-3\right)^2\ge0\)

Bất đẳng thức cuối hiển nhiên.

Đẳng thức xảy ra khi \(a=b=c=1\). Done.

24 tháng 6 2018

6   \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)

vì n,n-1 là 2 số nguyên lien tiếp  \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)

  n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)

\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)

\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)

7   \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)

\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)

\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)

\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)

\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

6 tháng 8 2017

Đăng ít thôi.

6 tháng 8 2017

==" nghĩ mấy cía này của lớp 78 chứ sao lại 6

AH
Akai Haruma
Giáo viên
26 tháng 2 2022

Lời giải:
Do $a,b,c\in [0;1]$ nên:

$a^2(1-b)\leq 0$

$b^2(1-c)\leq 0$

$c^2(1-a)\leq 0$

Cộng theo vế suy ra: $a^2+b^2+c^2\leq a^2b+b^2c+c^2a$ 

Ta có đpcm.

27 tháng 2 2022

sao lại nhỏ hơn 0 vậy ạ