CMR BIỂU THỨC SAU VIẾT được VỀ dạng tổng các bình phương của 2 biểu thức
A= x2+ 2(x+2)2+ 3(x+2)2+4(x+3)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. (x + y)2 = x2 + 2xy + y2
b. (x - 2y)2 = x2 - 4xy - 4x2
c. (xy2 + 1)(xy2 - 1) = x2y4 - 1
d. (x + y)2(x - y)2 = (x2 + 2xy + y2)(x2 - 2xy + y2) = x4 - (2xy + y2)2 = x4 - (4x2y2 + y4) = x4 - 4x2y2 - y4
Chucs hocj toots
Câu 2:
a: \(x^2-4x+4=\left(x-2\right)^2\)
b: \(x^2+10x+25=\left(x+5\right)^2\)
d: \(9\left(x+1\right)^2-6\left(x+1\right)+1=\left(3x+2\right)^2\)
e: \(\left(x-2y\right)^2-8\left(x-2xy\right)+16x^2=\left(x-2y+4x\right)^2=\left(5x-2y\right)^2\)
\(x^2+2\left(x+1\right)^2+3\left(x-2\right)^2+4\left(x+3\right)^2\)
\(=x^2+2\left(x^2+2x+1\right)+3\left(x^2-4x+4\right)+4\left(x^2+6x+9\right)\)
\(=x^2+2x^2+4x+2+3x^2-12x+12+4x^2+24x+36\)
\(=10x^2+16x+50\)
1) b) \(\left(x-3y\right)^2+6\left(x-3\right)+9=\left(x-3y+3\right)^2\)
c) \(x^2+x+\dfrac{1}{4}=\left(x+\dfrac{1}{2}\right)^2\)
2) \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=11\)
\(\Rightarrow x^2+6x+9-x^2+4=11\)
\(\Rightarrow6x=-2\Rightarrow x=-\dfrac{1}{3}\)
A=x^2+2(x^2+2x+1)+3(x^2+4x+4)+4(x^2+6x+9)
=x^2+2x^2+4x+2+3x^2+12x+12+4x^2+24x+36
=10x^2+40x+50
=(9x^2+30x+25)+(x^2+10x+25)
=(3x+5)^2+(x+5)^2