Tìm giá trị nhỏ nhất của các biểu thức:
a) (x-2)2
b) (2x+1)4-3
c) (x2-9)4+giá trị tuyệt đối của y-2,-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = x2 + 4x - 2 = x2 + 4x + 4 - 6 = (x + 2)2 - 6
(x + 2)2 ≥ 0 => A ≥ -6 => GTNN của A là -6, xảy ra khi x = 2
`a)A=x^2+4x-2`
`A=x^2+4x+4-6=(x+2)^2-6`
Vì `(x+2)^2 >= 0 AA x`
`<=>(x+2)^2-6 >= -6 AA x`
Hay `A >= -6 AA x`
Dấu "`=`" xảy ra`<=>(x+2)^2=0<=>x=-2`
Vậy `GTN N` của `A` là `-6` khi `x=-2`
________________________________________________
`b)B=2x^2-4x+3`
`B=2(x^2-2x+3/2)`
`B=2(x^2-2x+1)+1=2(x-1)^2+1`
Vì `2(x-1)^2 >= 0 AA x`
`<=>2(x-1)^2+1 >= 1 AA x`
Hay `B >= 1 AA x`
Dấu "`=`" xảy ra `<=>(x-1)^2=0<=>x=1`
Vậy `GTN N` của `B` là `1` khi `x=1`
__________________________________________________
`c)C=x^2+y^2-4x+2y+5`
`C=x^2-4x+4+y^2+2y+1`
`C=(x-2)^2+(y+1)^2`
Vì `(x-2)^2 >= 0 AA x` và `(y+1)^2 >= 0 AA y`
`=>(x-2)^2+(y+1)^2 >= 0 AA x,y`
Hay `C >= 0 AA x,y`
Dấu "`=`" xảy ra`<=>{((x-2)^2=0),((y+1)^2=0):}`
`<=>{(x=2),(y=-1):}`
Vậy `GTN N` của `C` là `0` khi `x=2`,y=-1
\(A=\left(x-1\right)^2+8\ge8\\ A_{min}=8\Leftrightarrow x=1\\ B=\left(x+3\right)^2-12\ge-12\\ B_{min}=-12\Leftrightarrow x=-3\\ C=x^2-4x+3+9=\left(x-2\right)^2+8\ge8\\ C_{min}=8\Leftrightarrow x=2\\ E=-\left(x+2\right)^2+11\le11\\ E_{max}=11\Leftrightarrow x=-2\\ F=9-4x^2\le9\\ F_{max}=9\Leftrightarrow x=0\)
Không làm mất tính tổng quát, giả sử \(0< x\le y\le z\)
=> \(x+y+z\le3z\Leftrightarrow xyz\le3z\Leftrightarrow xy\le3\)
Mà x;y;z là các số nguyên dương => \(xy\in\left\{1;2;3\right\}\)
Ta xét các trường hợp:
TH1: \(xy=1\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow2+z=z\Leftrightarrow2=0\) (vô lý!)
TH2: \(xy=2\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\Leftrightarrow z=3\) (thỏa mãn)
TH3: \(xy=3\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\Leftrightarrow z=2\) (thỏa mãn)
Vậy (x;y;z) là các hoán vị của (1;2;3)
A = |x + 1| + |y - 2| ≥ |x + 1 + y - 2|
= |x + y - 1|
= |2 - 1|
= 1
Vậy giá trị nhỏ nhất của A là 1
\(A=\left|x+1\right|+\left|y-2\right|\)
\(\Rightarrow A\le x+1+y-2\)
\(A\le x+y-1\)
\(A\le4\)
Vậy giá trị nhỏ nhất biểu thức A là 4.
a) 0
b)-3
c)-1