1: Cho hình tam giác ABC , M là trung điểm của BC . Nối A với M . Hãy chứng tỏ rằng diện tích 2 hình tam giác ABM và ACM bằng nhau.
2; Cho hình tam giác ABC có diện tích 340,2 cm2 . M và N là 2 trung điểm trên cạnh BC sao cho BM=MN=NC.Tính diện tích hình tam giác AMN
Kẻ AH vuông góc với BC
Ta có: SABM=BM×AH2 ; SACM=CM×AH2
Vì CM=BM nên CM×AH2 =BM×AH2
=> Diện tích 2 tam giác ABM và ACM = nhau
+) Xét tam giác \(ABN\) và tam giác \(ABC\)
2 tam giác chung cạnh \(AB\); chung chiều cao hạ từ \(A\) vuông góc với cạnh \(BC\); cạnh \(BN=\frac{2}{3}\) cạnh \(BC\)
\(\Rightarrow\) diện tích tam giác \(ABN=\frac{2}{3}\) diện tích tam giác \(ABC\)
\(\Rightarrow\) diện tích tam giác \(ABN\) bằng \(340,2\times\frac{2}{3}=226,8\left(cm^2\right)\)
+) Xét tam giác \(AMN\) và tam giác \(ABN\)
2 tam giác chung cạnh \(AN\) ; chung chiều cao hạ từ \(A\) vuông góc với cạnh \(BC\) ; cạnh \(MN=\frac{1}{2}\) cạnh \(BN\)
\(\Rightarrow\) diện tích tam giác \(AMN=\frac{1}{2}\) diện tích tam giác \(ABN\)
\(\Rightarrow\) diện tích tam giác \(AMN\) bằng \(226,8\times\frac{1}{2}=113,4\left(cm^2\right)\)
đáp số : \(113,4cm^2\)