K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2017

vậy f(1/2)+3.f(2)=1/4 hay 3f(1/2)+9.f(2)=3/4

và f(2)+3.f(1/2)=4 

trừ vế theo vế ta đc 

8.f(2)=-13/4

suy ra f(2)=-13/32

6 tháng 2 2017

mình ko biết xin lỗi bạn nha!

mình ko biết xin lỗi bạn nha!

mình ko biết xin lỗi bạn nha!

mình ko biết xin lỗi bạn nha!

mình ko biết xin lỗi bạn nha!

2 tháng 2 2017

ta có

thay x = 2 ta đc

f(2) + 2f(1/2) = 4                (1)

thay x = 1/2 ta đc

f(1/2) + 2f(2) = 1/4

=> 2f(1/2) + 4f(2) = 1/2               (2)

từ (1) và (2) => ta có

2f(1/2) + 4f(2) = 1/2

-

f(2) + 2f(1/2) = 4

=

3f(2) = 1/2 - 4 = -7/2

=> f(2) = -7/6

2 tháng 11 2016

Ta có \(f\left(x\right)+2f\left(\frac{1}{x}\right)=x^2\)

Xét với x = a thì ta có \(f\left(a\right)+2f\left(\frac{1}{a}\right)=a^2\) (1)

Xét với x = \(\frac{1}{a}\) thì ta có \(f\left(\frac{1}{a}\right)+2f\left(a\right)=\frac{1}{a^2}\)(2)

Từ (1) và (2) ta suy ra \(\hept{\begin{cases}f\left(a\right)+2f\left(\frac{1}{a}\right)=a^2\\f\left(\frac{1}{a}\right)+2f\left(a\right)=\frac{1}{a^2}\end{cases}\Leftrightarrow}\hept{\begin{cases}f\left(a\right)+2f\left(\frac{1}{a}\right)=a^2\left(1\right)\\2f\left(\frac{1}{a}\right)+4f\left(a\right)=\frac{2}{a^2}\left(2\right)\end{cases}}\)

Lấy (2) trừ (1) theo vế được \(3f\left(a\right)=\frac{2}{a^2}-a^2\Leftrightarrow f\left(a\right)=\frac{\frac{2}{a^2}-a^2}{3}=\frac{2-a^4}{3a^2}\)

Từ đó suy ra được \(f\left(x\right)=\frac{2-x^4}{3x^2}\)

Đến đây dễ dàng tính được f(2) 

2 tháng 11 2016

Mình kí hiệu (1) (2) hai lần , bạn sửa lại chỗ đó nhé ^^

6 tháng 1 2019

\(f\left(\frac{1}{3}\right)+2f\left(\frac{1}{\frac{1}{3}}\right)=\left(\frac{1}{3}\right)^2\Rightarrow f\left(\frac{1}{3}\right)+2f\left(3\right)=\frac{1}{9}\)(1)

\(f\left(3\right)+2f\left(\frac{1}{3}\right)=3^2\Rightarrow2f\left(3\right)+4f\left(\frac{1}{3}\right)=18\)(2)

Từ (1) và (2) \(\Rightarrow2f\left(3\right)+4f\left(\frac{1}{3}\right)-f\left(\frac{1}{3}\right)-2f\left(3\right)=18-\frac{1}{9}\)

\(\Rightarrow3f\left(\frac{1}{3}\right)=\frac{161}{9}\Rightarrow f\left(\frac{1}{3}\right)=\frac{161}{27}\)

10 tháng 3 2017

Giải:

Ta có:

\(f\left(x\right)+3.f\left(\frac{1}{3}\right)=x^2\left(1\right)\)

\(\Rightarrow f\left(\frac{1}{x}\right)+3.f\left(x\right)=\frac{1}{x^2}\)

\(\Rightarrow3.f\left(\frac{1}{x}\right)+9.f\left(x\right)=\frac{3}{x^2}\left(2\right)\)

Lấy \(\left(2\right)-\left(1\right)\) ta được:

\(9.f\left(x\right)-f\left(x\right)=\frac{3}{x^2}-x^2\)

\(\Rightarrow f\left(x\right)=\frac{3-x^4}{8x^2}\)

\(\Rightarrow f\left(2\right)=\frac{3-2^4}{8.2^2}=\frac{-13}{32}\)

Vậy \(f\left(2\right)=\frac{-13}{32}\)

10 tháng 3 2017

thêm điều kiện f(x) xác định mọi x khác 0."

Giải:

\(\left\{{}\begin{matrix}f\left(2\right)+3f\left(\dfrac{1}{2}\right)=2^2=4\left(1\right)\\f\left(\dfrac{1}{2}\right)+3f\left(2\right)=\dfrac{1}{4}\left(2\right)\end{matrix}\right.\)

lấy (2) nhân 3 trừ (1)

\(8.f\left(2\right)=\dfrac{3}{4}-4=-\dfrac{13}{4}\Rightarrow f\left(2\right)=\dfrac{-13}{32}\)

NV
15 tháng 4 2022

\(h\left(x\right)=f\left(x^2+1\right)-m\Rightarrow h'\left(x\right)=2x.f'\left(x^2+1\right)\)

\(h'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\f'\left(x^2+1\right)=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x^2+1=2\\x^2+1=5\end{matrix}\right.\) \(\Rightarrow x=\left\{-2;-1;0;1;2\right\}\)

Hàm có nhiều cực trị nhất khi \(h\left(x\right)=m\) có nhiều nghiệm nhất

\(f\left(x\right)=\int f\left(x\right)dx=\dfrac{1}{4}x^4-\dfrac{5}{3}x^3-2x^2+20x+C\)

\(f\left(1\right)=0\Rightarrow C=-\dfrac{199}{12}\Rightarrow f\left(x\right)=-\dfrac{1}{4}x^4-\dfrac{5}{3}x^3-2x^2+20x-\dfrac{199}{12}\)

\(x=\pm2\Rightarrow x^2+1=5\Rightarrow f\left(5\right)\approx-18,6\)

\(x=\pm1\Rightarrow x^2+1=2\Rightarrow f\left(2\right)\approx6,1\)

\(x=0\Rightarrow x^2+1=1\Rightarrow f\left(1\right)=0\)

Từ đó ta phác thảo BBT của \(f\left(x^2+1\right)\) có dạng:

undefined

Từ đó ta dễ dàng thấy được pt \(f\left(x^2+1\right)=m\) có nhiều nghiệm nhất khi \(0< m< 6,1\)

\(\Rightarrow\) Có 6 giá trị nguyên của m

15 tháng 4 2022

f(5)≈−18,6 ở đâu ra vậy ạ?

8 tháng 3 2017

4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)

mà 3^6/9-81=0  => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0