Tìm giá trị nhỏ nhất của bt:\(A=\frac{1}{x^2+y^2}+\frac{3}{xy}+2xy\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có \(x+y=1\Rightarrow\left(x+y\right)^2=1\)
Áp dụng bđt cô si ta có \(2xy\le x^2+y^2\Rightarrow4xy\le\left(x+y\right)^2=1\Rightarrow2xy\le\frac{1}{2}\)
=> \(\frac{1}{2xy}\ge2\)
dấu = xảy ra <=> x=y=1/2
Bài \(1a.\) Tìm \(x,y,z\) biết \(x^2+4y^2=2xy+1\) \(\left(1\right)\) và \(z^2=2xy-1\) \(\left(2\right)\)
Cộng \(\left(1\right)\) và \(\left(2\right)\) vế theo vế, ta được:
\(x^2+4y^2+z^2=4xy\)
\(\Leftrightarrow\) \(x^2-4xy+4y^2+z^2=0\)
\(\Leftrightarrow\) \(\left(x-2y\right)^2+z^2=0\)
Do \(\left(x-2y\right)^2\ge0\) và \(z^2\ge0\) với mọi \(x,y,z\)
nên để thỏa mãn đẳng thức trên thì phải đồng thời xảy ra \(\left(x-2y\right)^2=0\) và \(z^2=0\)
\(\Leftrightarrow\) \(^{x-2y=0}_{z^2=0}\) \(\Leftrightarrow\) \(^{x=2y}_{z=0}\)
Từ \(\left(2\right)\), với chú ý rằng \(x=2y\) và \(z=0\), ta suy ra:
\(2xy-1=0\) \(\Leftrightarrow\) \(2.\left(2y\right).y-1=0\) \(\Leftrightarrow\) \(4y^2-1=0\) \(\Leftrightarrow\) \(y^2=\frac{1}{4}\) \(\Leftrightarrow\) \(y=\frac{1}{2}\) hoặc \(y=-\frac{1}{2}\)
\(\text{*)}\) Với \(y=\frac{1}{2}\) kết hợp với \(z=0\) \(\left(cmt\right)\) thì \(\left(2\right)\) \(\Rightarrow\) \(2.x.\frac{1}{2}-1=0\) \(\Leftrightarrow\) \(x=1\)
\(\text{*)}\) Tương tự với trường hợp \(y=-\frac{1}{2}\), ta cũng dễ dàng suy ra được \(x=-1\)
Vậy, các cặp số \(x,y,z\) cần tìm là \(\left(x;y;z\right)=\left\{\left(1;\frac{1}{2};0\right),\left(-1;-\frac{1}{2};0\right)\right\}\)
\(b.\) Vì \(x+y+z=1\) nên \(\left(x+y+z\right)^2=1\)
\(\Leftrightarrow\) \(x^2+y^2+z^2+2\left(xy+yz+xz\right)=1\) \(\left(3\right)\)
Mặt khác, ta lại có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) \(\Rightarrow\) \(xy+yz+xz=0\) \(\left(4\right)\) (do \(xyz\ne0\))
Do đó, từ \(\left(3\right)\) và \(\left(4\right)\) \(\Rightarrow\) \(x^2+y^2+z^2=1\)
Vậy, \(B=1\)
Câu 1: Tự làm :D
Câu 2: \(A=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\)
Đẳng thức xảy ra khi x = y = 2
Vậy...
Câu 3:
a) Trùng với câu 2
b) ĐK:x khác -1
\(B=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}=\frac{3\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)}\)
\(=\frac{3}{x^2+1}\le\frac{3}{0+1}=3\)
Đẳng thức xảy ra khi x = 0
Làm nốt cái câu 1 và đầy đủ cái câu 2:v
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
Làm nốt nha.Lười quá:((
2
\(A=x^2-2xy+2y^2-4y+5\)
\(A=\left(x-2xy+y^2\right)+\left(y^2-4y+4\right)+1\)
\(A=\left(x-y\right)^2+\left(y-2\right)^2+1\)
\(A\ge1\)
Dấu "=" xảy ra tại \(x=y=2\)
Áp dụng BĐT AM-GM:
\(\frac{x+1}{1+y^2}=x+1-\frac{y^2\left(x+1\right)}{y^2+1}\ge x+1-\frac{y\left(x+1\right)}{2}=x+1-\frac{xy+y}{2}\)
TƯơng tự cho 2 BĐT còn lại rồi coojgn theo vế:
\(Q\ge x+y+z+3-\frac{xy+yz+xz+x+y+z}{2}\)
\(\ge6-\frac{\frac{\left(x+y+z\right)^2}{3}+3}{2}\ge3\)
"=" <=> x=y=z=1