cho tam giác abc,trên ab lấy điểm m làm điểm chính giữa,trên bc lấy n làm điểm chính giữa,trên ac lấy i làm điểm chính giữa .Nối m với n,nối n với i,nối i với m.So sánh diện tích hình tam giác mni với diện tích tam diac abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
SBMN = \(\dfrac{1}{2}\)SABN ( hai tam giác có chung đường cao và tỉ số hai cạnh đáy tương ứng là \(\dfrac{1}{2}\))
SABN = \(\dfrac{1}{2}\) SABC ( hai tam giác có chung đường cao và tỉ số hai cạnh đáy là \(\dfrac{1}{2}\))
=> SBMN = \(\dfrac{1}{2}\times\dfrac{1}{2}\)SABC = \(\dfrac{1}{4}\) SABC
Chứng minh tương tự ta có :
SAMI = SCNI = \(\dfrac{1}{4}\) SABC
=> SMNI = Mặt khác ta có :
SABC = SBMN + SAMI + SCNI + SMNI
=> SMNI = SABC - SBMN - SAMI
=> SMNI = SABC - \(\dfrac{1}{4}\) SABC - \(\dfrac{1}{4}\) SABC - \(\dfrac{1}{4}\)SABC
=> SMNI = SABC \(\times\)( 1 - \(\dfrac{1}{4}\) - \(\dfrac{1}{4}\) - \(\dfrac{1}{4}\))
=> SMNI = \(\dfrac{1}{4}\)SABC
bn có thể tham khảo tại: https://olm.vn/hoi-dap/detail/96626463011.html
a) \(S_{ANB}=\dfrac{1}{2}\times S_{ABC}\) (chung đường cao hạ từ \(B\), \(AN=\dfrac{1}{2}\times AC\))
\(S_{AMC}=\dfrac{1}{2}\times S_{ABC}\) (chung đường cao hạ từ \(C\), \(AM=\dfrac{1}{2}\times AB\))
suy ra \(S_{AMC}=S_{ANB}\).
b) \(S_{MIB}=S_{ANB}-S_{AMIN},S_{NIC}=S_{AMC}-S_{AMIN}\)
mà \(S_{AMC}=S_{ANB}\) suy ra \(S_{MIB}=S_{NIC}\).