1 số tự nhiên khi chia cho 2 dư 1 , chia 3 dư 2 , chia cho 4 dư 3 và chia 5 dư 4 . Hãy tìm số tự nhiên bé nhất , thỏa mãn các số đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là a
Ta có:
a + 2 thuộc BC(3; 4; 5; 6}
Ta lại có:
3 = 3
4 = 22
5 = 5
6 = 2.3
=> BCNN(3; 4; 5; 6) = 22.3.5 = 60
=> a + 2 thuộc B(60)
=> a + 2 thuộc {0; 60; 120; 180; 240; 300; 360; 420;...}
=> a thuộc {58; 118; 178; 238; 298; 358; 418...} (Vì a thuộc N)
Mà nhỏ nhất chia hết cho 11 =>a = 418
Vậy...
Đặt số cần tìm là A thì A + 2 chia hết cho BCNN(3, 4, 5, 6) = 60. Do đó A + 2 có dạng 60k với k nguyên dương. Hơn nữa, A chia hết cho 13 dẫn đến cần tìm k nhỏ nhất sao 60k = 13h + 2 với h nguyên dương và dễ thấy h chẵn.
Đặt h = 2x => 30k = 13x + 1 <=> 4k = 13y + 1 với y = x - 2k. Vậy y chia 4 dư 3, khi đó 13y + 1 ≥ 13.3 + 1 = 40 => k ≥ 10.
Nói cách khác giá trị nhỏ nhất của k là 10, suy ra A = 60.10 - 2 = 598.
Gọi số tự nhiên đó là a ta có:
a chia hết cho 11 suy ra a thuộc {11;22;33;44;..}
mà a+1 chia hết cho 3
a+2 chia hết cho 4
a +4 chia hết cho 6
nên a =111
839. Mk nghĩ vậy, nếu bn cần trình bày rõ ràng thì bn đáp lại nhá!!!
Đáp án là 59