Tìm số nguyên x,y biết x +xy + y =9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(xy-y+x=9\)
\(\Rightarrow x\left(x-y\right)+x=9\)
\(\Rightarrow x\left(x-y+1\right)=9\)
\(\Rightarrow x;\left(x-y+1\right)\in\left\{-1;1;-3;3;-9;9\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(-1;9\right);\left(1;-7\right);\left(-3;-1\right);\left(3;1\right);\left(-9;-7\right);\left(9;9\right)\right\}\)
\(xy\) - \(y\) + \(x\) = 9
(\(xy\) + \(x\)) - \(y\) = 9
\(x\)(\(y\) + 1) - \(y\) = 9
\(x\)(\(y+1\)) = 9 + \(y\)
\(x\) = \(\dfrac{9+y}{y+1}\) ( y \(\ne\) -1)
\(x\in\) z \(\Leftrightarrow\) 9 + \(y\) ⋮ \(y\) + 1
\(\Leftrightarrow\) \(y\) + 1 + 8 \(⋮\) \(y\) + 1
8 \(⋮\) \(y\) + 1
\(y\) + 1 \(\in\) { -8; -4; -2; -1; 1; 2; 4; 8}
\(y\) \(\in\) { -9; -5; -3; -2; 0; 1; 3; 7}
Lập bảng ta có:
y | -9 | -5 | -3 | -2 | 0 | 1 | 3 | 7 |
\(x=\dfrac{y+9}{y+1}\) | 0 | -1 | -3 | -7 | 9 | 5 | 3 | 2 |
(\(x;y\)) | (0;-9) | (-1; -5) | (-3; -3) | (-7; -2) | (9;0) | (5;1) | (3;3) | (2;7) |
Vậy các cặp (\(x\); y) thỏa mãn đề bài lần lượt là:
(\(x;y\)) =(0; -9); (-1; -5); (-3; -3); (-7; -2); (9; 0); (5; 1) (3; 3); (2; 7)
a/
$(x+1)+(x+2)+...+(x+100)=5750$
$(x+x+....+x)+(1+2+....+100)=5750$
Số lần xuất hiện của $x$:
$(100-1):1+1=100$
Suy ra:
$100x+(1+2+3+....+100)=5750$
$100x+100.101:2=5750$
$100x+5050=5750$
$100x=700$
$x=700:100$
$x=7$
b/
$x^2y-x+xy=6$
$x(xy-1+y)=6$
Do $x,y$ nguyên nên $xy-1+y$ cũng là số nguyên. Mà tích $x(xy-1+y)=6$ nên ta có các TH sau:
TH1: $x=1, xy-1+y=6$
$\Rightarrow y-1+y=6\Rightarrow y=\frac{7}{2}$ (loại)
TH2: $x=-1, xy-1+y=-6$
$\Rightarrow -y-1+y=-6\Rightarrow -1=-6$ (vô lý - loại)
TH3: $x=2, xy-1+y=3$
$\Rightarrow 2y-1+y=3\Rightarrow 3y=4\Rightarrow y=\frac{4}{3}$ (loại)
TH4: $x=-2, xy-1+y=-3$
$\Rightarrow -2y-1+y=-3$
$\Rightarrow -y-1=-3\Rightarrow y=2$ (tm)
TH5: $x=3, xy-1+y=2\Rightarrow 3y-1+y=2$
$\Rightarrow 4y=3\Rightarrow y=\frac{3}{4}$ (loại)
TH6: $x=-3, xy-1+y=-2\Rightarrow -3y-1+y=-2$
$\Rightarrow -2y=-1\Rightarrow y=\frac{1}{2}$ (loại)
TH7: $x=6, xy-1+y=1$
$\Rightarrow 6y-1+y=1\Rightarrow 7y=2\Rightarrow y=\frac{2}{7}$ (loại)
TH8: $x=-6, xy-1+y=-1$
$\Rightarrow -6y-1+y=-1$
$\Rightarrow -5y=0\Rightarrow y=0$ (tm)
Bài 1: Ta có 5x+7=5(x-2)+8
Để 5x+7 chia hết cho x-2 thì 5(x-2) +8 chia hết cho x-2
=> 8 chia hết cho x-2
x nguyên => x-2 nguyên => x-2 thuộc Ư (8)={-8;-4;-2;-1;1;2;4;8}
ta có bảng
x-2 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
x | -6 | -2 | 0 | 1 | 3 | 4 | 6 | 10 |
Bài 2:
a) xy+x=-15
<=> x(y+1)=-15
=> x, y+1 thuộc Ư (-15)={-15;-5;-3;-1;1;3;5;15}
Ta có bảng
x | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
y+1 | 1 | 3 | 5 | 15 | -15 | -5 | -3 | -1 |
y | 0 | 2 | 4 | 14 | -16 | -6 | -4 | -2 |
b) xy+2-y=9
<=> y(x-1)=7
=> y, x-1 thuộc Ư (7)={-7;-1;1;7}
Ta có bảng
y | -7 | -1 | 1 | 7 |
x-1 | -1 | -7 | 7 | 1 |
x | 0 | -6 | 6 | 2 |
c) xy+2x+2y=-17
<=> x(y+2)+2(y+2)=-15
<=> (x+2)(y+2)=-15
<=> x+2; y+2 thuộc Ư (-15)={-15;-5;-3;-1;1;3;5;15}
Ta có bảng
x+2 | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
x | -17 | -7 | -5 | -3 | -1 | 1 | 3 | 13 |
y+2 | 1 | 3 | 5 | 15 | -15 | -5 | -3 | -1 |
y | -1 | 1 | 3 | 13 | -17 | -7 | -5 | -3 |
x + xy + y = 9
<=> x + xy + y + 1 = 9 + 1
<=> x(y + 1) + (y + 1) = 10
<=> (x + 1)(y + 1) = 10
Ta có bảng sau
Vậy các cặp (x;y) thõa mãn là (0;-11) ; (-2;9) ; (1;-6) ; (-3;4) ; (4;-3) ; (-6;1) ; (9;-2) ; (-11;0)
May ngu
Tao lv 1211 lc 100k ma moi v111
TaoTM
may la hinata
T
XIn loi ban minh len con dong kinh