CMR : ( n +4 ) ( n +5 ) chia hết cho 2
CMR : ƯCLN ( 2n+1,2n+3) = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình chỉ tạm thời trả lời câu c thôi:
+ Nếu n là số chẵn thì n là số chẵn sẽ chia hết cho 2
suy ra: n.(n+5) sẽ chia hết cho 2 (1)
+ Nếu n là số lẻ thì n+5 là số chẵn sẽ chia hết cho 2
suy ra: n.(n+5) sẽ chia hết cho 2 (2)
Vậy: từ 1 và 2 ta chứng minh rằng tích n.(n+5) luôn luôn chia hết cho 2 với mọi số tự nhiên n
a) ƯCLN(4n+1; 5n+1) = 1
Gọi UCLN(4n+1; 5n+1) = d
\(\Rightarrow\hept{\begin{cases}4n+1⋮d\\5n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}5.\left(4n+1\right)⋮d\\4.\left(5n+1\right)⋮d\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}20n+5⋮d\\20n+4⋮d\end{cases}}\)
\(\Rightarrow\left(20n+5\right)-\left(20n+4\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\RightarrowƯCLN\left(4n+1;5n+1\right)=1\)
b) UCLN(2n+1;2n+3) =1
Gọi UCLN(2n+1; 2n+3) = d
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)
\(\Rightarrow\left(2n+1\right)-\left(2n+3\right)⋮d\)
\(\Rightarrow2⋮d\Rightarrow d\inƯ\left(2\right)=\left\{1;2\right\}\)
Nếu d = 2 thì \(2n⋮2\)
Nhưng 3 không chia hết cho 2, Vậy k thoả màn điều kiện chia hết cho d
Nếu d = 1 => Thoả mãn điều kiện chia hết
=> UCLN(2n+1; 2n+3) = 1
c) n.(n+5) chia hết cho 2 vs mọi n thuộc N
Th1: n là số chẵn
=> n + 5 là số lẻ
=> chẵn . lẻ = chẵn chia hết cho 2
Th2: n là số lẻ
=> n + 5 là số chẵn
=> chẵn . lẻ = chẵn chia hết cho 2
Vậy vs mọi n thuộc N, n(n + 5) chia hết cho 2
THANKS!!!!!!!!!!!!!!!!!!!!!!!
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
a) n(n + 5) - (n - 3)(n + 2) = n2 + 5n - n2 - 2n + 3n + 6 = 6n + 6 = 6(n + 1) \(⋮\)6 \(\forall\)x \(\in\)Z
b) (n2 + 3n - 1)(n + 2) - n3 + 2 = n3 + 2n2 + 3n2 + 6n - n - 2 - n3 + 2 = 5n2 + 5n = 5n(n + 1) \(⋮\)5 \(\forall\)x \(\in\)Z
c) (6n + 1)(n + 5) - (3n + 5)(2n - 1) = 6n2 + 30n + n + 5 - 6n2 + 3n - 10n + 5 = 24n + 10 = 2(12n + 5) \(⋮\)2 \(\forall\)x \(\in\)Z
d) (2n - 1)(2n + 1) - (4n - 3)(n - 2) - 4 = 4n2 - 1 - 4n2 + 8n + 3n - 6 - 4 = 11n - 11 = 11(n - 1) \(⋮\)11 \(\forall\)x \(\in\)Z
Bài 1
Tách n thành 2 dạng 2k +1 (lẻ) và 2k (chẵn)
Với trường hợp 2k + 1 (lẻ) ,ta có :
(n + 4)(n + 5)
= (2k + 1 + 4)(2k + 1 + 5)
= (2k + 5)(2k + 6)
= (2k + 5).2.(k + 3) chia hết cho 2 (1)
Với trường hợp 2k (chẵn) ,ta có :
(n + 4)(n + 5)
= (2k + 4)(2k + 5)
= 2.(k + 2)(2k + 5) chia hết cho 2 (2)
Từ 1 và 2
=> Với mọi x , thì (n + 4)(n + 5) chia hết cho 2
BẠN TỐT ĐẤY THẾ CÒN BÀI HAI THÌ SAO