Tìm GTLN, GTNN (nếu có ) của biểu thức sau: 3x2 + 2x + 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2-3x+2=2\left(x^2-\frac{3}{2}x\right)+2\)
\(=2\left(x^2-2.\frac{3}{4}x+\frac{9}{16}-\frac{9}{16}\right)+2=2\left(x-\frac{3}{4}\right)^2-\frac{9}{8}+2\ge\frac{7}{8}\)
Dấu ''='' xảy ra khi x = 3/4
Vậy GTNN của A bằng 7/8 tại x = 3/4
a: (2x-3)^2>=0
=>-(2x-3)^2<=0
=>D<=-3
Dấu = xảy ra khi x=3/2
b: (2x-5)^2>=0
(y+1/2)^2>=0
=>(2x-5)^2+(y+1/2)^2>=0
=>D>=2022
Dấu = xảy ra khi x=5/2 và y=-1/2
a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)
\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)
b. \(0\le\sqrt{4-x^2}\le2\)
\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)
vậy \(GTNN=\frac{\sqrt{46}}{4}\)
ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)
\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)
ta có: \(D=x^2-2x+3\)
=>\(D=x^2-2x+1^2-1+3\)
=>\(D=\left(x-1\right)^2-2\)
Do \(\left(x-1\right)^2\ge0\) với mọi x (dấu "=" xảy ra <=> x=1)
=>\(\left(x-1\right)^2-2\ge-2\) hay \(D\ge-2\) với mọi x (dấu "=" xảy ra <=> x=1)
Vậy MIN D=\(-2\) tại x=1
ta có : \(x^2-2x+3=x^2-2x+1+2=\left(x-1\right)^2+2\ge2\)
\(\Rightarrow D_{max}\) là \(2\) khi \(x=1\)
a, \(-\dfrac{2}{3}+\left|\dfrac{1}{2}x-3\right|\ge-\dfrac{2}{3}\)
Dấu ''='' xảy ra khi x = 6
Vậy GTNN biểu thức trên là -2/3 khi x = 6
b, \(1,6-\left|2x-1\right|\le1,6\)
Dấu ''='' xảy ra khi x = 1/2
Vậy GTLN biểu thức trên là 1,6 khi x = 1/2
a) Ta có: \(\left|\dfrac{1}{2}x-3\right|\ge0\forall x\)
\(\Leftrightarrow\left|\dfrac{1}{2}x-3\right|-\dfrac{2}{3}\ge-\dfrac{2}{3}\forall x\)
Dấu '=' xảy ra khi x=6
b) Ta có: \(\left|2x-1\right|\ge0\)
\(\Leftrightarrow-\left|2x-1\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-1\right|+1.6\le1.6\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
là \(4x+\dfrac{1}{x^2}+2x+2\) hay là \(\dfrac{4x+1}{x^2+2x+2}\) cái neog:0
3x2 + 2x + 3=3.(x2+\(\frac{2}{3}\)x+1)=3.(x2+2.x.\(\frac{1}{3}\)+\(\frac{1}{9}\)+\(\frac{8}{9}\))
=3.(\(\left(x+\frac{1}{3}\right)^2+\frac{8}{9}\))
=3.\(\left(x+\frac{1}{3}\right)^2\)+\(\frac{24}{9}\)>\(\frac{24}{9}\)
Vậy GTNN của 3x2 + 2x + 3=\(\frac{24}{9}\)\(\Leftrightarrow\)\(\left(x+\frac{1}{3}\right)^2\)=0\(\Leftrightarrow\)x=\(-\frac{1}{3}\)