K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2016

102 - 103 - ( - 103 ) - 104 - ( - 104 ) - .......... - 198 - ( - 199 )

= 102 - 103 + 103 - 104 + 104 - ......... - 198 + 199

= 102 - 0 - 0 - .......... - 0 + 199

= 102 - ( + 199 )

= - ( 199 - 102 )

= - 97

14 tháng 11 2017

Ta có:\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}=\dfrac{100}{200}=\dfrac{1}{2}\)

Lại có:

\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}< \dfrac{1}{101}+\dfrac{1}{101}+...+\dfrac{1}{101}=\dfrac{100}{101}\)

Vậy ...

Những dãy trên đều có 100 số hạng.

14 tháng 11 2017

Chúc bạn học tốt!

25 tháng 8 2016

Dãy trên có số số hạng là :

( 199 - 1 ) : 1 + 1 = 199 ( số hạng )

Tổng của dãy số trên là :

( 199 + 1 ) x 199 : 2 = 19900 

Đáp số : 19900 

25 tháng 8 2016

1 + 2 + 3 + 4  ..... 99 + 100 + 101 + 102 +103 + 104  ..... 189 + 199  = ? 

Số số hạng là : ( 199 - 1 ) : 1 + 1 = 199 

Tổng = ( 1 + 199 ) . 199 : 2 = 19900

10 tháng 7 2014

Từ 100 đến 200 có số số hạng là : (200- 100) :1 +1 =101 số hạng
Tổng của dãy số trên là : (200+100)x 101 :2 = 15150

21 tháng 2 2016

                                 giải 

số các số hạng là: (200-100) :1+1= 101 (số hạng)

Tổng của dãy số là: (200+100) x101 :2= 15150

Đáp số 15150

2 tháng 8 2023

\(A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{199}+\dfrac{1}{120}\left(a\right)\)

\(\Rightarrow A=\left(\dfrac{1}{101}+\dfrac{1}{102}+...\dfrac{1}{125}\right)+\left(\dfrac{1}{126}+\dfrac{1}{127}+...\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...\dfrac{1}{175}\right)+\left(\dfrac{1}{176}+\dfrac{1}{177}+...\dfrac{1}{200}\right)\)

\(\Rightarrow A>25.\dfrac{1}{125}+25.\dfrac{1}{150}+25.\dfrac{1}{175}+25.\dfrac{1}{200}\)

\(\Rightarrow A>\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\)

\(\Rightarrow A>\dfrac{168+140+120+105}{840}=\dfrac{533}{840}>\dfrac{5}{8}\left(\dfrac{533}{840}>\dfrac{525}{840}\right)\)

\(\Rightarrow A>\dfrac{5}{8}\left(1\right)\)

\(\left(a\right)\Rightarrow A=\left(\dfrac{1}{101}+...\dfrac{1}{120}\right)+\left(\dfrac{1}{121}+...\dfrac{1}{140}\right)+\left(\dfrac{1}{141}+...\dfrac{1}{160}\right)+\left(\dfrac{1}{161}+...\dfrac{1}{180}\right)+\left(\dfrac{1}{181}+...\dfrac{1}{200}\right)\)

\(\Rightarrow A< 20.\dfrac{1}{100}+20.\dfrac{1}{120}+20.\dfrac{1}{140}+20.\dfrac{1}{160}+20.\dfrac{1}{180}\)

\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}\)

\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{504+420+360+315+280}{2520}=\dfrac{1879}{2520}< \dfrac{3}{4}\left(\dfrac{1879}{2520}< \dfrac{1890}{2520}\right)\)

\(\Rightarrow A< \dfrac{3}{4}\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\dfrac{5}{8}< A< \dfrac{3}{4}\left(dpcm\right)\)

19 tháng 7 2016

\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}+\frac{1}{200}< \frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)

                                                                                            100 phân số \(\frac{1}{100}\)

                                                                             \(< \frac{1}{100}.100\)

                                                                              \(< 1\left(đpcm\right)\)

\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{199}+\frac{1}{200}\)

\(< \frac{1}{100}+\frac{1}{100}+.....+\frac{1}{100}\)( 100 phân số )

\(< \frac{1}{100}.100=\frac{100}{100}=1\)

Vậy : \(\frac{1}{101}+\frac{1}{102}+.....+\frac{1}{200}< 1\)

6 tháng 2 2023

Ta có:  \(\dfrac{1}{101}>\dfrac{1}{200}\)

Tương tự ta có: \(\dfrac{1}{102}>\dfrac{1}{200}\) ;....; \(\dfrac{1}{199}>\dfrac{1}{200}\)

\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{199}+\dfrac{1}{200}>\dfrac{1}{200}.100\)

\(\Leftrightarrow\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{199}+\dfrac{1}{200}>\dfrac{100}{200}\)

\(\Leftrightarrow\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{199}+\dfrac{1}{200}>\dfrac{1}{2}\left(đpcm\right)\)

8 tháng 6 2016

Chứng minh cái j đấy???

8 tháng 6 2016

A = 1/101 + 1/102 + 1/103 + ... + 1/199 + 1/200

A = ( 1/101 + 1/102 + 1/103 + ... + 1/150) + ( 1/151 + 1/152 + 1/153 + ... + 1/200)

                     ( 50 phân số)                                         ( 50 phân số)

A < 1/150 x 50 + 1/200 x 50

A < 1/3 + 1/4 

A < 7/12

Chứng tỏ A < 7/12