cho tam giác ABC cân tại A, đường cao AH. gọi D là trung điểm của AC. kẻ DE vuông góc AH ( E thuốc AH ) và DF vuông góc BC ( F thuộc BC )
a) cm tứ giác HEDF là hcn
b) gọi I là điểm đối xứng của A qua H. tứ giác ABIC là hình gì ? vì ?
c) tam giác ABC cần đk gì để tứ giác ABIC là hv
d) BD cắt AH tại O. tính tỉ số diện tích tam giác OBC và diện tích tứ giác HEDF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEDF có
góc AED=góc AFD=góc FAE=90 độ
nên AEDF là hình chữ nhật
b: Xét ΔABC có CF/CA=CD/CB
nên DF//AB và DF=AB/2
=>Di//AB và DI=AB
=>ABDI là hình bình hành
Ta có tam giác ABC vuông tại A nên đường cao AH cũng là đường trung tuyến của tam giác ABC. Vậy ta có AH = HD.
Vì D là trung điểm của BC nên BD = CD.
Vì góc DE vuông góc với AC tại E nên tam giác ADE vuông góc tại E.
Vì F là điểm đối xứng của E qua D nên tam giác ADF cũng tại D.
Ta có:
- Tam giác ADE vuông tại E và tam giác ADF vuông tại D có cạnh chung AD.
- Tam giác ADE và tam giác ADF có cạnh AD bằng nhau (vì F là điểm đối xứng của E qua D).
Vậy tam giác ADE và tam giác ADF là hai tam giác cân có cạnh chung AD.
Do đó, ta có AE = AF và DE = DF.
Vì M là trung điểm của HC nên ta có HM = MC.
Vì FM là đường trung tuyến của tam giác HAC nên ta có FM = \(\frac{1}{2}\)AC.
Ta cần chứng minh FM vuông góc với AM.
Ta có:
- Tam giác ADE và tam giác ADF là hai tam giác cân có cạnh chung AD.
- AE = AF và DE = DF.
Do đó, tam giác ADE và tam giác ADF là hai tam giác đồng dạng (theo nguyên tắc đồng dạng cận-cạnh-cạnh).
Do đó, ta có \(\frac{AE}{DE} = \frac{AF}{DF}\).
Vì AE = AF và DE = DF nên ta có \(\frac{AE}{DE} = \frac{AF}{DF} = 1\).
Vậy tam giác ADE và tam giác ADF là hai tam giác đồng dạng cân.
Do đó, ta có góc EAD = góc FAD và góc AED = góc AFD.
Vì góc EAD + góc AED = 90° (do tam giác ADE vuông góc tại E) nên góc FAD + góc AFD = 90°.
Do đó, ta có góc FAM = 90°.
Do đó, FM vuông góc với AM.
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
=>AM=DE
b: Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình
=>DE//BC và DE=1/2BC
=>DE//MC và DE=MC
Xét tứ giác DMCE có
DE//MC
DE=MC
Do đó: DMCE là hình bình hành
c: ΔHAC vuông tại H có HE là trung tuyến
nên \(HE=\dfrac{1}{2}AC\)
mà \(MD=\dfrac{1}{2}AC\)
nên HE=MD
Xét tứ giác DHME có
ED//MH
nên DHME là hình thang
mà HE=MD
nên DHME là hình thang cân
ΔHAB vuông tại H
mà HD là trung tuyến
nên HD=AD
EA=EH
DA=DH
Do đó: ED là đường trung trực của AH
a)Xét tứ giác AFDE có :góc AED = 90°(gt)góc EAF = 90 °(gt)góc AFD =90 °(gt)=> Tứ giác AFDE là hình chữ nhật ( dhnb)(đcpcm)