K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2020

Hộp 1 có 9 viên, hộp 2 có 9 viên, lấy ở mỗi hộp 1 viên.

\(\Rightarrow n(Ω)=(C_{9}^{1})^2=81\)

A: "Hai viên bi chọn được cùng màu".

TH1: cùng màu vàng: \(C_{6}^{1} .C_{5}^{1} =30\)

TH2: cùng màu đỏ: \(C_{3}^{1} .C_{4}^{1}=12\)

\(\Rightarrow n(A)=30+12=42\)

\(\Rightarrow P(A) =\dfrac{n(A)}{n(Ω)}=\dfrac{42}{81}=\dfrac{14}{27}\).

19 tháng 12 2020

Hộp 1 có 9 viên, hộp 2 có 9 viên, lấy ở mỗi hộp 1 viên.

\(\Rightarrow n(Ω)=(C_{9}^{1})^2=81\)

A: "Hai viên bi chọn được cùng màu".

TH1: cùng màu vàng: \(C_{6}^{1} .C_{5}^{1} =30\)

TH2: cùng màu đỏ: \(C_{3}^{1} .C_{4}^{1}=12\)

\(\Rightarrow n(A)=30+12=42\)

\(\Rightarrow P(A) =\dfrac{n(A)}{n(Ω)}=\dfrac{42}{81}=\dfrac{14}{27}\).

31 tháng 5 2018

Không gian mẫu là chọn ngẫu nhiên mỗi hộp 2 viên bi.

Suy ra số phần tử của không gian mẫu là .

Gọi A  là biến cố 4 viên bi được chọn luôn có bi đỏ nhưng không có bi xanh . Ta liệt kê các trường hợp thuận lợi của không gian biến cố A như sau:

 ●   Trường hợp 1. Chọn hộp thứ nhất 2 viên bi đỏ, có  cách.

 Chọn hộp thứ hai 2 viên bi từ 8 viên bi (2 đỏ và 6 vàng), có  cách.

Do đó trường hợp này có  cách.

●   Trường hợp 2. Chọn hộp thứ nhất 1 viên bi đỏ và 1 viên bi vàng, có  cách.

Chọn hộp thứ hai 2 viên bi từ 8 viên bi (2 đỏ và 6 vàng), có  cách.

Do đó trường hợp này có  cách.

●   Trường hợp 3. Chọn hộp thứ nhất 2 viên bi vàng, có  cách.

Chọn hộp thứ hai 2 viên bi đỏ hoặc 1 viên bi đỏ và 1 viên bi vàng, có  cách.

Do đó trường hợp này có  cách.

Suy ra số phần tử của biến cố A là

Vậy xác suất cần tính

Chọn B.

14 tháng 3 2017

Đáp án D.

6 tháng 1 2019

Đáp án D

6 tháng 4 2022

dễ vải

12 tháng 4 2022

Vậy Nguyễn Đăng Khoa trả lời đi

26 tháng 5 2019

Đáp án B

Có các cách chọn sau:

+) 1 bi đỏ, 1 bi vàng, 3 bi xanh, suy ra có  C 6 1 C 7 1 C 5 3 = 420 cách.

+) 2 bi đỏ, 2 bi vàng, 1 bi xanh, suy ra có  C 6 2 C 7 2 C 5 1 = 1575 cách.

Suy ra xác suất bằng  420 + 1575 C 18 5 = 95 408 .

12 tháng 7 2019