K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2016

5a^2+2b^2=11ab

<=>5a^2+2b^2-11ab=0

<=>5a^2-10ab-ab+2b^2=0

<=>5a(a-2b)-b(a-2b)=0

<=>(5a-b)(a-2b)=0

<=>5a-b=0 hoặc a-2b=0 <=> 5a=b hoặc a=2b

Nhưng 0 < b/5 < a => b < 5a nên 5a=b là vô lí

Thay a=2b vào ,ta có M = 4.(2b)^2-5b^2/(2b)^2+3.2b.b=11b^2/10b^2=11/10

25 tháng 12 2016

cảm ơn bạn nha^-^

25 tháng 12 2016

\(2P=2x^2+2y^2-2xy-2x+2y+2\)

= (x2 - 2xy + y2) + \(\frac{4}{3}\)(y - x) + \(\frac{4}{9}\)+ (x2 - \(\frac{2}{3}\)x + \(\frac{1}{9}\)) + (y2 + \(\frac{2}{3}\)y + \(\frac{1}{9}\)) + \(\frac{4}{3}\)

= (y - x + \(\frac{2}{3}\))2 + (x - \(\frac{1}{3}\))2 + (y + \(\frac{1}{3}\))2 + \(\frac{4}{3}\)\(\ge\frac{4}{3}\)

\(\Rightarrow P\ge\frac{2}{3}\)

Vậy GTNN là \(\frac{2}{3}\)đạt được khi x = \(\frac{1}{3}\); y = - \(\frac{1}{3}\)  

25 tháng 12 2016

Nhiều quá không muốn giải. Bạn chọn đi. Mình giúp bạn giải 1 câu (bạn thích câu nào mình giải câu đó cho ) :D

NV
15 tháng 8 2021

1.

a.

ĐKXĐ: \(x^2-1>0\Rightarrow\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)

\(log_2\left(x^2-1\right)=3\)

\(\Rightarrow x^2-1=8\)

\(\Leftrightarrow x^2=9\)

\(\Rightarrow x=\pm3\) (tm)

b.

ĐKXĐ: \(x>0\)

\(log_3x+log_{\sqrt{3}}x+log_{\dfrac{1}{3}}x=6\)

\(\Leftrightarrow log_3x+2log_3x-log_3x=6\)

\(\Leftrightarrow log_3x=3\)

\(\Rightarrow x=3^3=27\)

NV
15 tháng 8 2021

c. ĐKXĐ: \(x>0\)

\(log_{\sqrt{2}}^2x+3log_2x+log_{\dfrac{1}{2}}x=2\)

\(\Leftrightarrow\left(2log_2x\right)^2+3log_2x-log_2x=2\)

\(\Leftrightarrow4log_2^2x+2log_2x-2=0\)

\(\Rightarrow\left[{}\begin{matrix}log_2x=-1\\log_2x=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\sqrt{2}\end{matrix}\right.\)

 

AH
Akai Haruma
Giáo viên
30 tháng 10 2021

Bài 1:

Áp dụng HTL trong tam giác vuông:
$AH^2=BH.CH$

$\Leftrightarrow x^2=4.9=36$

$\Rightarrow x=6$ (do $x>0$)

AH
Akai Haruma
Giáo viên
30 tháng 10 2021

Bài 2:

Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10$ (cm)

$\sin B=\frac{AC}{BC}=\frac{6}{10}=\frac{3}{5}$

$\Rightarrow \widehat{B}=36,87^0$

$\widehat{C}=90^0-\widehat{B}=90^0-36,87^0=53,13^0$