Chứng minh rằng đa thức P(x) có ít nhất hai nghiệm biết rằng:
\(x\times P\left(x+1\right)=\left(x-2\right)\times P\left(x\right)\) )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Thay x=3 vào đẳng thức, thu được:
\(3\times f\left(3+2\right)=\left(3^2-9\right)\times f\left(3\right)\)
\(\Leftrightarrow\) \(3\times f\left(5\right)=0\times f\left(3\right)=0\)
\(\Leftrightarrow\) \(f\left(5\right)=0\)
2) Ta đã chứng minh x=5 là nhiệm của f(x)\(\Rightarrow\)Cần chứng minh f(x) có 2 nghiệm nữa
\(0\times f\left(0+2\right)=\left(0^2-9\right)\times f\left(0\right)\)
\(\Leftrightarrow\) \(f\left(0\right)=0\)
\(\Rightarrow\)x=0 là ngiệm của f(x)
\(-3\times f\left(-3+2\right)=\left(\left(-3\right)^2-9\right)\times f\left(-3\right)\)
\(\Leftrightarrow\)\(-3\times f\left(-1\right)=0\times f\left(-3\right)=0\)
\(\Leftrightarrow\)\(f\left(-1\right)=0\)
\(\Rightarrow\)x=-1 là nghiệm của f(x)
Vậy f(x) có ít nhất 3 nghiệm là x=5; x=0; x=-1
Giải :
Vì :
x.P(x+1) = ( x - 2 ) .P(x) với mọi x . Nên :
* Nếu cho x = 0 , ta có :
0.P(0+1) = (0-2) . P(0)
0 = -2 . P( 0)
=> P ( 0 ) = 0
=> x = 0 là 1 nghiệm của đt P ( x )
* Nếu cho x = 2 , ta có :
2 . P ( 2 + 1 ) = ( 2 - 2 ) . P ( 2 )
2 . P ( 3 ) = 0
=> p ( 3 ) = 0
=> x = 3 là 1 nghiệm của đt p( x )
Vậy đt P ( x ) có ít nhất 2 nghiệm là x = 0 và x = 3 .
Với \(x=\sqrt{4}\)ta có :
\(\left(x^2-4\right)P\left(\sqrt{4}+1\right)=\left(x^2-3\right)P\left(\sqrt{4}\right)\)
\(\Rightarrow\left(4-4\right)P\left(\sqrt{4}+1\right)=\left(4-3\right)P\left(\sqrt{4}\right)\)
\(\Rightarrow0.P\left(\sqrt{4}+1\right)=P\left(\sqrt{4}\right)\Rightarrow P\left(\sqrt{4}\right)=0\)
Vậy \(\sqrt{4}\)là 1 nghiệm của P(x)
Với \(x=\sqrt{3}\)
\(\Rightarrow\left(3-4\right)P\left(\sqrt{3}+1\right)=\left(3-3\right)P\left(\sqrt{3}\right)\)
\(\Rightarrow-P\left(\sqrt{3}+1\right)=0\)
\(\Rightarrow P\left(\sqrt{3}+1\right)=0\)
Vậy............
Tự làm tiếp nha
vì (x2-4)P(x+1) = (x2-3)P(x) với mọi x nên :
- khi x2=4 => +) x=2 thì 0.P (x+1)=1.P(x) =>P(x) = 0. vậy x=2 là 1 nghiệm của f(x)
+) x=-2 thì 0.P (x+1)=1.P(x) =>P(x) = 0. vậy x=-2 là 1 nghiệm của f(x)
- khi x2=3 => +) x=\(\sqrt{3}\) thì 5.P (x+1)=0.P(x) =>P(x+1) = 0. vậy x=\(\sqrt{3}\) là 1 nghiệm của f(x)
+) x= \(-\sqrt{3}\) thì 5.P (x+1)=0.P(x) =>P(x+1) = 0. vậy x=\(\sqrt{3}\) là 1 nghiệm của f(x)
Do đó f(x) có ít nhất 4 nghiệm là: 2; -2; \(-\sqrt{3}\); \(\sqrt{3}\)
Ta có nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng
Nếu f(a) = 0 => a là nghiệm của f(x).
Do: x.f(x + 1) = (x + 2).f(x) (1) đúng với mọi x.
+ Thay x = 0 vào (1) ta được
0.f(0 + 1) = (0 + 2).f(0)
=> 0 = 2.f(0)
=> f(0) = 0
Do f(0) = 0 => x = 0 là 1 nghiệm của đa thức trên. (2)
+ Thay x = -2 vào (1) ta được:
(-2).f(-2 + 1) = (-2 + 2).f(-2)
=> (-2).f(-1) = 0.f(-2)
=> (-2).f(-1) = 0
=> f(-1) = 0
=> x = -1 là 1 nghiệm của đa thức trên (3)
Từ (2) và (3) => đa thức đã cho có ít nhất 2 nghiệm là x = 0 và x = -2
Cho x=0
=> \(x.P\left(x+2\right)-\left(x-3\right).P\left(x-1\right)=0-\left(x-3\right).P\left(x-1\right)=0\)
=> \(\left(x-3\right).P\left(x-1\right)=0\)
=> \(P\left(x-1\right)=0\)(1)
Cho x=3
=> \(x.P\left(x+2\right)-\left(x-3\right).P\left(x-1\right)=x.P\left(x+2\right)-0=0\)
=> \(x.P\left(x+2\right)=0\)
=> \(P\left(x+2\right)=0\)(2)
Từ (1) và (2) => P(x) có ít nhất 2 nghiệm
Thay x = -3 thì 1 là nghiệm của P(x)
Thay x = 5 thì 5 là nghiệm của P(x)
Vậy P(x) có ít nhất 2 nghiệm là 1 và 5.
Chúc bạn học tốt.
Khi x=-3 thì ta sẽ có:
(9-9)*P(-3)=(-6-2)*P(-3+1)
=>-8*P(-2)=0*P(-3)=0
=>x=-2 là nghiệm của P(x)
Khi x=3 thì ta sẽ có;
(9-9)*P(3)=(2*3-2)*P(3+1)
=>4P(4)=0
=>P(4)=0
=>x=4 là nghiệm của P(x)
Khi x=1 thì ta sẽ có:
(2-2)*P(2)=(1-9)*P(1)
=>-8*P(1)=0
=>P(1)=0
=>x=1 là nghiệm của P(x)
=>ĐPCM