K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2016

Bạn tham khảo bài này, có dạng tương tự.

http://olm.vn/hoi-dap/question/776690.html

21 tháng 12 2016

Ta có

\(x^4+x^3+x^2+x+1=y^2\)

\(\Leftrightarrow4y^2=4x^4+4x^3+4x^2+4x+4\)cũng là số chính phương

Ta thấy rằng

\(4x^4+4x^3+4x^2+4x+4>4x^4+4x^3+x^2=\left(2x^2+x\right)^2\)

Và 

\(4x^4+4x^3+4x^2+4x+4< 4x^4+4x^3+9x^2+4x+4=\left(2x^2+x+2\right)^2\)

\(\Rightarrow\left(2x^2+x\right)^2< \left(2y\right)^2< \left(2x^2+x+2\right)^2\)

\(\Rightarrow4y^2=\left(2x^2+x+1\right)^2\)

\(\Leftrightarrow4x^4+4x^3+4x^2+4x+4=4x^4+4x^3+5x^2+2x+1\)

\(\Leftrightarrow x^2-2x-3=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)

23 tháng 9 2021

81:9= 9

18 tháng 4 2017

Giải:

Dùng biến đổi tương đương chứng minh được:

\(\left(x^2+x+2\right)^2=x^4+5x^3+4x+4>x^4+2x^3+2x^2+x+3>\) \(x^4+2x^3+x^2=\left(x^2+x\right)^2\)

\(\Rightarrow x^4+2x^3+2x^2+x+3=\left(x^2+x+1\right)^2\)

\(\Leftrightarrow x^4+2x^3+2x^2+x+3=x^4+2x^3+3x^2+2x+1\)

\(\Leftrightarrow x^2+x-2=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Vậy \(x=1\) hoặc \(x=-2\) thì phương trình trên là số chính phương

18 tháng 4 2017

dùng phương pháp hệ số bất định ý bạn gọi đa thức đó là bình phương của đa thức (x^2+ax+b)^2 rồi khai triển là ok

4 tháng 6 2018

a/ ta có: 

\(x\sqrt{2y-1}+y\sqrt{2x-1}=\sqrt{x}.\sqrt{2xy-x}+\sqrt{y}.\sqrt{2xy-y}\)

\(\le\frac{x+2xy-x}{2}+\frac{y+2xy-y}{2}=2xy\)

Dấu = xảy ra khi ...

4 tháng 6 2018

Khi gì

19 tháng 12 2015

(x25-x22)+(x22-x19)+(x19-x16)...+(x4-x) chia hết cho x2+x+1
hay x25-x chia hết cho x2+x+1
mà x2+x+1 chia hết cho x2+x+1
=> x25+x2+1 chia hết cho x2+x+1
2.a2(a2-a+2) là cp
Vì a2 là cp để a2(a2-a+2) là cp <=> a2-a+2 cũng là cp <=> 4(a2-a+2) là cp
Đặt 4(a2-a+2)=k2 (k tự nhiên)
<=> (2a-1)2+7=k
<=>7=(k-2a+1)(k+2a-1)=7.1=1.7=-1.(-7)=-7.(-1)
Kẻ bảng tự tìm nốt giá trị của a nhé
 

19 tháng 12 2015

mong các pn trả lời giúp mik. mik sẽ tick cho các pn

 

8 tháng 8 2015

A = x^4 - x^2 + 2x + 2 = (x^4 - x^2) + (2x + 2)
= x^2(x^2 - 1) + 2(x + 1) = x^2(x - 1)(x + 1) + 2(x + 1)
= (x + 1)(x^3 - x^2 + 2)
= (x + 1)[(x^3 + 1) - (x^2 - 1)]
= (x + 1)[(x + 1)(x^2 - x + 1) - (x - 1)(x + 1)]
= (x + 1)^2.(x^2 - 2x + 2)
= (x + 1)^2.[(x - 1)^2 + 1]
Với x = - 1 => A = 0 (nhận)
Với x # -1
Ta có : A = k^2 với k là số tự nhiên
=> (x + 1)^2.[(x - 1)^2 + 1] = k^2
=> (x - 1)^2 + 1 phải là số chính phương
=> (x - 1)^2 + 1 = m^2 (với m là số tự nhiên và m^2 >= 1<=> m > 0)
<=> (x - 1)^2 - m^2 = - 1
<=> (x - 1 - m)(x -1 + m) = -1 = 1.(-1)
Vì m > 0 => x - 1 + m > x - 1 - m
x , m nguyên => x - 1 - m và x - 1 + m là số nguyên
=> x - 1 + m = 1 và x - 1 - m = -1
<=> x + m = 2 và x - m = 0
<=> x = m = 1
=> A = 1^4 - 1^2 + 2.1 + 2 = 4 là số chính phương vói x = 1
Vậy x = 1 và x = -1 thì A là số chính phương