Tìm x thuộc Z để các số hữu tỉ sau là số nguyên:\(\frac{x\left(x-2\right)+4}{x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{x+2}{x+1}=1+\dfrac{1}{x+1}\)
Để A nguyên :
\(x+1\inƯ\left(1\right)\\ Ư\left(1\right)=\left\{1;-1\right\}\\ \Rightarrow\left\{{}\begin{matrix}x+1=1\\x+1=-1\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
b, Để \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
=> TH1: x - 2 > 0 => \(x\in\) Các số nguyên dương > 2
TH2: \(x+\frac{2}{3}>0\)
=> \(x\in\) Các số nguyên dương và số 0
Mà : \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
=> x thuộc các số nguyên dương > 2
Bài làm:
c) \(-\frac{2}{5}+\frac{5}{3}\left(\frac{3}{2}-\frac{4}{15}x\right)=-\frac{7}{6}\)
\(\Leftrightarrow-\frac{2}{5}+\frac{5}{2}-\frac{4}{9}x=-\frac{7}{6}\)
\(\Leftrightarrow\frac{4}{9}x=-\frac{2}{5}+\frac{5}{2}+\frac{7}{6}\)
\(\Leftrightarrow\frac{4}{9}x=\frac{49}{15}\)
\(\Leftrightarrow x=\frac{49}{15}\div\frac{4}{9}\)
\(\Rightarrow x=\frac{147}{20}\)
Vậy \(x=\frac{147}{20}\)
Bài 2:
a) Ta có: \(F=\frac{3x-2}{x+3}=\frac{\left(3x+9\right)-11}{x+3}=3-\frac{11}{x+3}\)
Để F nguyên \(\Rightarrow\frac{11}{x+3}\inℤ\Leftrightarrow x+3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)
\(\Rightarrow x\in\left\{-14;-4;-2;8\right\}\)
Vậy \(x\in\left\{-14;-4;-2;8\right\}\)thì F nguyên
2b) Tách
\(G=\frac{x^2-2x+4}{x+1}=\frac{x^2+x-3x-3+7}{x+1}=\frac{x\left(x+1\right)-3\left(x+1\right)+7}{x+1}\)
\(=\frac{x\left(x+1\right)}{x+1}-\frac{3\left(x+1\right)}{x+1}+\frac{7}{x+1}=x-3+\frac{7}{x+1}\)
G là số nguyên <=> \(\frac{7}{x+1}\)là số nguyên <=> \(7⋮x+1\)<=> \(x+1\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
<=> \(x\in\left\{0;-2;6;-8\right\}\)
Đáy lớn là
26 + 8 = 34 M
chIỀU CAO là
26 - 6 = 20 m
Diện tích thửa ruộng là
{ 34 + 26 } x 20 : 2 = 800 m2
Đáp số 800 m2
Ta có: \(A=\dfrac{x+1}{x-2}=\dfrac{x-2+3}{x-2}=\dfrac{x-2}{x-2}+\dfrac{3}{x-2}=1+\dfrac{3}{x-2}\)
Để A là số nguyên thì \(x-2\inƯ\left(3\right)=\left\{-1,-3,1,3\right\}\)
Ta có bảng giá trị:
x - 2 | -1 | -3 | 1 | 3 |
x | 1 (tm) | -1 (tm) | 3 (tm) | 5 (tm) |
Vậy ...
Ta có : \(A=\dfrac{x+1}{x-2}=\dfrac{x-2+3}{x-2}\)
\(\Rightarrow A=1+\dfrac{3}{x-2}\)
Vì x là số nguyên nên để A cũng là số nguyên thì : \(\dfrac{3}{x-2}\in Z\)
\(\Rightarrow3⋮\left(x-2\right)\)
\(\Rightarrow\left(x-2\right)\inƯ\left(3\right)\)
Do đó ta có bảng :
x-2 | 1 | 3 | -1 | -3 |
x | 3 | 5 | 1 | -1 |
Vậy..........
a) \(f\left(x\right)=\frac{3x^2+3x+12}{\left(x-1\right)\left(x+2\right)x}=\frac{A}{x-1}+\frac{B}{x+2}+\frac{C}{x}=\frac{Ax\left(x+2\right)+Bx\left(x-1\right)+C\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)x}\)
Bằng cách thay các nghiệm thực của mẫu số vào hai tử số, ta có hệ :
\(\begin{cases}x=1\rightarrow18=3A\Leftrightarrow A=6\\x=-2\rightarrow18=6B\Leftrightarrow B=3\\x=0\rightarrow12=-2C\Leftrightarrow=-6\end{cases}\) \(\Rightarrow f\left(x\right)=\frac{6}{x-1}+\frac{3}{x+2}-\frac{6}{x}\)
Vậy : \(\int\frac{3x^2+3x+12}{\left(x-1\right)\left(x+2\right)x}dx=\int\left(\frac{6}{x-1}+\frac{3}{x+2}-\frac{6}{x}\right)dx=6\ln\left|x-1\right|+3\ln\left|x+2\right|-6\ln\left|x\right|+C\)
b) \(f\left(x\right)=\frac{x^2+2x+6}{\left(x-1\right)\left(x-2\right)\left(x-4\right)}=\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{x-4}\)
\(=\frac{A\left(x-2\right)\left(x-4\right)+B\left(x-1\right)\left(x-4\right)+C\left(x-1\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)\left(x-4\right)}\)
Bằng cách thay các nghiệm của mẫu số vào hai tử số ta có hệ :
\(\begin{cases}x=1\rightarrow9A=3\Leftrightarrow x=3\\x=2\rightarrow14=-2B\Leftrightarrow x=-7\\x=4\rightarrow30=6C\Leftrightarrow C=5\end{cases}\)
\(\Rightarrow f\left(x\right)=\frac{3}{x-1}-\frac{7}{x-2}+\frac{5}{x-4}\)
Vậy :
\(\int\frac{x^2+2x+6}{\left(x-1\right)\left(x-2\right)\left(x-4\right)}dx=\)\(\int\left(\frac{3}{x-1}+\frac{7}{x-2}+\frac{5}{x-4}\right)dx\)=\(3\ln\left|x-1\right|-7\ln\left|x-2\right|+5\ln\left|x-4\right|+C\)
Đặt \(\hept{\begin{cases}x-y=a\\y-z=b\\z-x=c\end{cases}}\)
Vì \(\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=0\) nên \(a+b+c=0\Rightarrow a+b=-c\)
Ta có : \(P=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}\)
\(=\sqrt{\frac{\left(a+b\right)^2b^2+a^2\left(a+b\right)^2+a^2b^2}{a^2b^2\left(a+b\right)^2}}=\sqrt{\frac{a^4+b^4+a^2b^2+2ab^3+2ab^3+2a^2b^2}{a^2b^2\left(a+b\right)^2}}\)
\(=\sqrt{\frac{\left(a^2+b^2+ab\right)^2}{a^2b^2\left(a+b\right)^2}}=\frac{a^2+b^2+ab}{ab\left(a+b\right)}\) là một số hữu tỉ (đpcm)
Ta có:
\(x\left(x+y+z\right)=\frac{15}{2}\)
\(y\left(x+y+z\right)=\frac{-5}{2}\)
\(z\left(x+y+z\right)=20\)
=>\(x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=\frac{15}{2}+\frac{-5}{2}+20\)
\(\left(x+y+z\right)\left(x+y+z\right)=\frac{15-5}{2}+20\)
\(\left(x+y+z\right)^2=\frac{10}{2}+20\)
\(\left(x+y+z\right)^2=5+20\)
\(\left(x+y+z\right)^2=25\)
=>x+y+z=5 hoặc x+y+x=-5
Với x+y+z=5
=>\(x.5=\frac{15}{2}\)=>\(x=\frac{15}{2}.\frac{1}{5}=\frac{3}{2}\)
\(y.5=\frac{-5}{2}\)=>\(y=\frac{-5}{2}.\frac{1}{5}=\frac{-1}{2}\)
\(z.5=20\)=>\(z=\frac{20}{5}=4\)
Với x+y+z=-5
=>\(x.\left(-5\right)=\frac{15}{2}\)=>\(x=\frac{15}{2}.\frac{-1}{5}=\frac{-3}{2}\)
\(y.\left(-5\right)=\frac{-5}{2}\)=>\(y=\frac{-5}{2}.\frac{-1}{5}=\frac{1}{2}\)
\(z.\left(-5\right)=20\)=>\(z=\frac{20}{-5}=-4\)
Vậy \(x=\frac{3}{2},y=-\frac{1}{2},z=4\); \(x=-\frac{3}{2},y=\frac{1}{2},z=-4\)
Ta có:
\(x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=\frac{15}{2}+\left(-\frac{5}{2}\right)+20\)(Cộng vế với vế)
\(\Leftrightarrow\left(x+y+z\right)\left(x+y+z\right)=\frac{50}{2}=25\)
\(\Rightarrow\left(x+y+z\right)^2=25\Leftrightarrow x+y+z=\sqrt{25}=5\)
\(\Rightarrow\hept{\begin{cases}x.5=\frac{15}{2}\Rightarrow x=\frac{3}{2}\\y.5=-\frac{5}{2}\Rightarrow y=-\frac{1}{2}\\z.5=20\Rightarrow z=4\end{cases}}\)
Vậy \(x=\frac{3}{2};y=-\frac{1}{2};z=4\).