Tìm số tự nhiên nhỏ nhất biết số đó chia hết cho 5 , cho 7 , cho 9 có số dư lần lượt là 3,4,5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
Gọi số cần tìm là x.
Vì x chia cho 5 dư 1, chia cho 6 dư 2, chia cho 7 dư 3, chia cho 8 dư 4.
=> x + 4 chia hết cho 5,6,7,8.
=> x+4 thuộc BC(5,6,7,8)
Mà BCNN(5,6,7,8)= 840
=> x + 4 =840K
=> x = 840K - 4 (K thuộc N*)
Lại có: a là số tự nhiên nhỏ nhất có 4 chữ số
=> K=2
=> x = 840.2 - 4
=> x = 1680 - 4
=> x = 1676
Vậy số cần tìm là 1676.
Từ đề bài => a + 4 chia hết cho 5;6;7;8
=> a + 4 = BCNN(5;6;7;8)
5 = 5 ; 6= 2.3 ; 7 = 7 ; 8 = 23
=> BCNN(5;6;7;8) = 23.5.7 = 280
Vậy a = 280 - 4 = 276
Ta có :
a : (5,6,7,8) dư (1,2,3,4)
=>(a+4) chia hết cho (5,6,7,8)
=> (a+4) = BC (5,6,7,8)
BCNN (5,6,7,8) = 840
BC (5,6,7,8) = (840 ; 1680 ; 2520.....)
=> (a+4) = (840 ; 1680 ; 2520....)
=> a = (836 ; 1676 ; 2516....)
Mà a nhỏ nhất có 4 chữ số nên a = 1676
tick nha đúng 100%
Lời giải:
Gọi số cần tìm là $a$. Theo đề thì:
$a-3\vdots 70,210,350$
$\Rightarrow a-3\vdots BCNN(70,210,350)$
$\Rightarrow a-3\vdots 1050$
$\Rightarrow a=1050k+3$ với $k$ là số tự nhiên
Vì $a$ có 4 chữ số nên $1050k+3>999$
$\Rightarrow k>0$
Để $a$ nhỏ nhất thì $k$ nhỏ nhất. $\Rightarrow k=1$
Khi đó: $a=1050.1+3=1053$
Gọi số tự nhiên cần tìm có dạng abcd ( \(0< a\le9\) , \(0\le b,c,d\le9\) )
Do số cần tìm khi chia cho 70 , 210 , 350 có cùng số dư là 3 nên
=> ( abcd - 3 ) \(⋮\) 70 , 210 , 350
=> ( abcd -3 ) \(⋮\) ƯCLN( 70 ; 210 ; 350)
70 = 2 . 5 . 7
210 = 2 . 3 . 5 . 7
350 = 2 . \(5^2\) . 7
=> ƯCLN ( 70;210;350) = 2 . 3 . \(5^2\) . 7 = 1050
=> abcd -3 chia hết 1050
mà abcd là số nhỏ nhất có 4 chữ số
=> abcd -3 = 1050
=> abcd = 1053
vậy số cần tìm là 1053
Gọi số cần tìm là a
Giả sử a chia cho 5 được b dư 3 ta có
a = 5b + 3
2a = 10b + 6 = 10b + 5 + 1
2a – 1 = 10b + 5 hay nói cách khác 2a – 1 chia hết cho 5(1)
giả sử a chia cho 7 được c dư 4 ta có
a = 7c + 4
2a = 14c + 8 = 14c + 7 + 1
2a – 1 = 14c + 7 hay nói cách khác 2a – 1 chia hết cho 7(2)
giả sử a chia cho 9 được d dư 5 ta có
a = 9a + 5
2a = 18d + 10 = 18d + 9 + 1
2a – 1 = 18d + 9 hay 2a – 1 chia hết cho 9(3)
từ 1, 2 và 3 ta có 2a - 1 chia cho 5, 7, 9 vì yêu cầu tìm số tự nhiên nhỏ nhất nên 2a – 1 là bội số chung nhỏ nhất của (5,7,9) = 5.7.9 = 315
suy ra 2a – 1 = 315
2a = 316
a = 158
vậy số cần tìm là 158