Cho tam giác ABC, đường phân giác BD. Vẽ DE vuông góc với BC
a/ CM tam giác ABD = tam giác EBD
b/ So Sánh AD và CD
c/ Gọi M là trung điểm của AB; N là trung điểm của BE. CM: AN,BD,EM đông quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
t/g ABC vuông tại A?
a/ Xét t/g ABD vuông tại A và t/g EBD vuông tại E có
BD : chung
\(\widehat{ABD}=\widehat{CBD}\)
=> t/g ABD = t/g EBD
b/ Có t/g ABD = t/g EBD
=> AD = ED
Mà t/g DEC vg tại E => CD > ED
=> CD > AD
c/ Gọi AN cắt EM tại F
Xét t/g ABE có AN, EM là 2 đường trung tuyến cắt nhau tại F
=> F là trọng tâm t/g ABE
=> BF cắt AE tại trung điểm AE (1)
Mà t/g ABD = t/g EBD
=> AB = EB '; AD = ED
=> BD là đường tủng trực của AE
=> BD đi qua trung điểm AE (2)
(1) ; (2)
=> AN,BD,EM đông quy
a)xét tg ABD và tg CBD có:
+ AB=BE(gt)
+ góc ABD = EBD (BD là phân giác)
+BD chung
=>tg ABD= tg EBD(c.gc)
b) vì tg ABD=tgEBD
=> AD=DE và góc BAD = BED (=90 độ)
=> DE ⊥ BC
=> tg DEC có DC là cạnh huyền =>DC>ED mà ED=AD => DC>AD
c)xét tg BFE và tg BCA có:
+ Góc E = A (=90 độ)
+góc B chung
+ BE=BA
=>tg BFE =tg BCA (gcg)
=>BF=BC
=> tg BFC cân tại B
vì S là td FC
=>BS vừa là trung tuyến vừa là đường cao
=>BS⊥FC (1)
tg BFC có: D là giao của 2 đg cao CA và FE
=> D là trực tâm => BD ⊥ FC (2)
từ 1 và 2 => B,D,S thẳng hàng
Sửa đề: AB = BE (không phải AB = AE)
Gởi hình vẽ trước, đi công việc, tí sửa sau
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD là trung trực của AE
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC
=>DF=DC
d: AD=DE
DE<DC
=>AD<DC
e: Xét ΔBFC có BA/AF=BE/EC
nên AE//CF
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
Suy ra: DA=DE
Ta có: ΔABD=ΔEBD
nên \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE⊥BC
c: Ta có: BE=BA
nên B nằm trên đường trung trực của EA(1)
Ta có: DE=DA
nên D nằm trên đường trung trực của EA(2)
Từ (1) và (2) suy ra BD là đường trung trực của EA
a: Xet ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
góc BAD=góc EAD
=>ΔABD=ΔAED
=>AB=AE và DB=DE
=>AD là trung trực của BE
b: Xét ΔAEF vuông tại E và ΔABC vuông tại B có
AE=AB
góc EAF chung
=>ΔAEF=ΔABC
=>AF=AC
Xet ΔADF và ΔADC có
AD chung
góc DAF=góc DAC
AF=AC
=>ΔADF=ΔADC
c: ΔCBF vuông tại B
mà BM là trung tuyến
nên MB=MF
a: XétΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó:ΔBAD=ΔBED
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔADF=ΔEDC
Suy ra: DF=DC
hay ΔDFC cân tại D
b: Ta có: DE=DA
mà DA<DF
nên DE<DF
Hình tự vẽ :
a, Xét \(\Delta ABD\)và \(\Delta EBD\)có :
+, BD chung
+, \(\widehat{ABD}=\widehat{EBD}\)( Do BD là phân giác )
+, Góc A = Góc E = 90o
=> Tam giác ABD = EBD ( cạnh huyền - góc nhọn )
b, Từ câu a, Ta có :
AD = ED < CD ( do CD là cạnh huyền tam giác CDE )
c, Ta có M là trung điểm của AB , N là trung điểm của BE
Vậy giao điểm AN và EM là trọng tâm tam giác ABE
Vậy Ta chỉ cần đi chứng minh BD là trung tuyến của tam giác ABE suy ra 3 đường đồng quy