\(\left(5^{1998}+5^{2000}+5^{2002}\right):\left(5^{1999}+5^{1997}+5^{1995}\right)\)) bằng bao nhiêu ( trình bày luôn nha ) mình sẽ tik 5 tik cho các bạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{5^{1998}+5^{2000}+5^{2002}}{5^{1999}+5^{1997}+5^{1995}} \)
\(= \dfrac{5^{1998}(1 + 5^2 + 5^4)}{5^{1995}(5^4 + 5^2 + 1)} \\ = \dfrac{5^{1998}}{5^{1995}} \cdot \dfrac{1 + 5^2 + 5^4}{5^4 + 5^2 + 1} \\ = 5^3\)
A=[1+(-2)+(3)+4]+[5+(-6)+(-7)]+.....+[1997+(-1998)+(-1999)+2000] A=0+0+0+...+0=0
a) (2+1)(2^2+1)(2^4+1)...(2^32+1)-2^64
=(2+1)(2-1)(2^2+1)(2^4+1)...(2^32+1)-2^64
=(2^2-1)(2^2+1)(2^4+1)...(2^32+1)-2^64
=(2^4-1)(2^4+1)....(2^32+1)-2^64
=......
=(2^32-1)(2^32+1)-2^64
=2^64-1-2^64=-1
b)Đặt A=(5+3)(5^2+3^2)(5^4+3^4)...(5^64+3^64)+(5^128-3^128)/2
đặt B=(5+3)(5^2+3^2)(5^4+3^4)...(5^64+3^64)
\(2B=\left(5-3\right)\left(5+3\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)\)
\(2B=\left(5^2-3^2\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)\)
\(2B=\left(5^4-3^4\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)\)
\(2B=.......\)
2B=(5^64-3^64)(5^64+3^64)
2B=5^128-3^128
B=(5^128-3^128)/2 (thế vào đề bài)
=> A=B+(5^128-3^128)/2=(5^128-3^128)/2+(5^128-3^128)/2=\(\frac{2\left(5^{128}-3^{128}\right)}{2}=\left(5^{128}-3^{128}\right)\)
a) A = ( 2-1)(2+1)(22+1)...(232+1)-264
=(22-1)(22+1)(24+1)... -264
=....
=264-1-264=1
câu b tương tự nhá
51998+52000+52002=51998x(1+2+4)=51998x7
51999+51997+51995=51995x(1+2+4)=51995x7
(51998+52000+52002):(51999+51997+51995)=(51998x7):(51995x7)=(51998:51995)x(7:7)=53x1=125
Vậy (51998+52000+52002)+(51999+51997+51995)=15