K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2016

Ta có: \(\frac{a^2+2b^2-m^2}{a^2+3b^2-6m^2}\)

Thay a = 4m và b = 5m ta được:

 \(\frac{4m^2+2.5m^2-m^2}{4m^2+3.5m^2-6m^2}=\frac{-2}{3}\)

12 tháng 12 2016

Sai rồi bạn ơi

26 tháng 12 2016

Thay a = 4m ;  b = 5m vào đẳng thức trên , ta có :

\(\frac{a^2+2b^2-m^2}{a^2+3b^2-6m^2}=\frac{\left(4m\right)^2+2.\left(5m\right)^2-m^2}{\left(4m\right)^2+3.\left(5m\right)^2-6m^2}\)

\(=\frac{16m^2+2.25m^2-m^2}{16m^2+3.25m^2-6m^2}=\frac{16m^2+50m^2-m^2}{16m^2+75m^2-6m^2}\)

\(=\frac{\left(16+50-1\right)m^2}{\left(16+75-6\right)m^2}=\frac{65}{85}=\frac{13}{17}\)

26 tháng 12 2016

Thay a=4m và b =5m vào biểu thức

Ta có: \(\frac{\left(4m\right)^2+2.\left(5m\right)^2-m^2}{\left(4m\right)^2+3.\left(5m\right)^2-6m^2}=\frac{16m^2+10m^2-m^2}{16m^2+15m^2-6m^2}\)\(=\frac{25m^2}{25m^2}=1\)

19 tháng 11 2017

\(\frac{a^2+2b^2-m^2}{a^2+3b^2-6m^2}=\frac{\left(4m\right)^2+2\left(5m\right)^2-m^2}{\left(4m\right)^2+3\left(5m\right)^2-6m^2}=\frac{16m^2+50m^2-m^2}{16m^2+375m^2-6m^2}\)

\(=\frac{65m^2}{385m^2}=\frac{13}{77}\)

19 tháng 11 2017

thay a = 4m, b = 5m vào biểu thức trên ta được :

\(\frac{\left(4m\right)^2+2.\left(5m\right)^2-m^2}{\left(4m\right)^2+3.\left(5m\right)^2-6m^2}\)

\(=\frac{16m^2+50m^2-m^2}{16m^2+75m^2-6m^2}\)

\(=\frac{m^2.\left(16+50-1\right)}{m^2.\left(16+75-6\right)}\)

\(=\frac{65m^2}{85m^2}=\frac{65}{85}=\frac{13}{17}\)

22 tháng 11 2016

Đáp án là :\(\frac{13}{17}\)

24 tháng 11 2016

cam on le thi uyen nhi nhe ma ban lam cach nao zay

23 tháng 11 2016

Thay a , b vào đẳng thức , ta có :

\(\frac{a^2+2b^2-m^2}{a^2+3b^2-6m^2}=\frac{\left(4m\right)^2+2.\left(5m\right)^2-m^2}{\left(4m\right)^2+3.\left(5m\right)^2-6m^2}=\frac{16.m^2+50.m^2-m^2.1}{16.m^2+75.m^2-6m^2}=\frac{\left(16+50-1\right)m^2}{\left(16+75-6\right)m^2}=\frac{65}{85}=\frac{13}{17}\)

8 tháng 11 2016

\(\frac{a^2+2b^2-m^2}{a^2+3b^2-6m^2}=\frac{\left(4m\right)^2+2\left(5m\right)^2-m^2}{\left(4m\right)^2+3\left(5m\right)^2-6m^2}\)

\(=\frac{4^2.m^2+2.5^2.m^2-m^2}{4^2.m^2+3.5^2.m^2-6.m^2}=\frac{16.m^2+50.m^2-m^2}{16.m^2+75.m^2-6.m^2}\)

\(=\frac{m^2.\left(16+50-1\right)}{m^2.\left(16+75-6\right)}=\frac{65}{85}=\frac{13}{17}\)

19 tháng 12 2016

Ta có: 

\(\frac{a^2+2b^2-m^2}{a^2+3b^2-6m^2}=\frac{\left(4m\right)^2+2\left(5m\right)^2-m^2}{\left(4m\right)^2+3\left(5m\right)^2-6m^2}=\frac{16m^2+50m^2-m^2}{16m^2+75m^2-6m^2}\)

\(=\frac{\left(16+50-1\right)m^2}{\left(16+75-6\right)m^2}=\frac{65m^2}{85m^2}=\frac{13}{17}\)

19 tháng 12 2016

cam on

6 tháng 12 2016

Đáp án là : \(\frac{13}{17}\)

13 tháng 4 2017

Ta có: \(\frac{2a^2+3b^2}{2a^3+3b^3}\left(a+b\right)=1+ab\frac{2a+3b}{2a^3+3b^3}\)

Áp dụng BĐT Holder ta có: 

\(\left(2a^3+3b^3\right)\left(2+3\right)^2\ge\left(2a+3b\right)^3\)

Vậy ta có thể viết lại BĐT cần chứng minh như sau;

\(VT\left(a+b\right)\le2+25ab\left(\frac{1}{\left(2a+3b\right)^2}+\frac{1}{\left(2b+3a\right)^2}\right)\)

Nó đủ để ta có thể thấy rằng 

\(25ab\left[\left(2b+3a\right)^2+\left(2a+3b\right)^2\right]\le2\left(2a+3b\right)^2\left(2b+3a\right)^2\)

\(\Leftrightarrow59\left(a^2-b^2\right)^2+13\left(a^4+b^4-a^3b-ab^3\right)\ge0\)

BĐT cuối cùng đúng nên ta có ĐPCM

3 tháng 5 2020

ok jjj