Tính:\(^{1^2}\)
a) 1^2-2^2+3^2-4^2+5^2-6^2+....+2009^2-2010^2
b) 3^2010-(3^2009+3^2008+3^2007+...+3+3^0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
\(A=1-2+3-4+5-...-2008+2009\)
\(A=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+...+\left(2007-2008\right)+2009\)
\(A=-1-1-1-...-1+2009\)(1004 số -1)
\(A=-1004+2009=1005\)
\(B=1+2-3-4+5+6-7-...-2007-2008+2009+2010\)
\(B=1+\left(2-3-4+5\right)+\left(6-7-8+9\right)+...+\left(2006-2007-2008+2009\right)+2010\)
\(B=1+0+0+...+0+2010\)
\(B=2011\)
Học tốt!!!!
32010- ( 32009 + 32008 + ... + 3 + 1 )
Đặt A = 1 + 3 + ... + 32009
=> 3A = 3 + 32 + ... + 32010
=> 3A - A = 32010 - 1
Nên 32010 - ( 32010 - 1 ) = 1
\(C=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{\frac{5}{2008}-\frac{5}{2009}-\frac{5}{2010}}+\frac{\frac{2}{2007}-\frac{2}{2008}-\frac{2}{2009}}{\frac{3}{2007}-\frac{3}{2008}-\frac{3}{2009}}\)
\(=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{5.\left(\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)}+\frac{2.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}{3.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}\)
\(=\frac{1}{5}+\frac{2}{3}\)
\(=\frac{13}{15}\)
=1+(2-3-4+5)+(6-7-8+9)+...+(2006-2007-2008+2009)+2010
=1+0+0+...+0+2010
=2011
Ta thấy tổng của 4 số bắt đầu từ 2 thì đều =0 (2-3-4+5=0,6-7-8+9=0)Ta đặt A=\(1+2-3-4+5+6-7-8+9+...+2006-2007-2008+2009+2010\)
= \(1+\left(2-3-4+5\right)+\left(6-7-8+9\right)+...+\left(2006-2007-2008+2009\right)+2010=1+0+0+...+0+2010=2011\)
a,S1=1+(-2)+3+(-4)+..........+2009+(-2010)
S1=-1.(2010:2)
S1=-1005
b,S2=1+(-2)+(-3)+4+5+(-6)+(-7)+............+2008+2009+(-2010)
S2=-1.(2010:2)
S2=-1.1005
S2=-1005