K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 2

Lời giải:

Áp dụng TCDTSBN:

$\frac{a+b+c-d}{d}=\frac{b+c+d-a}{a}=\frac{c+d+a-b}{b}=\frac{d+a+b-c}{c}$

$=\frac{a+b+c-d+b+c+d-a+c+d+a-b+d+a+b-c}{d+a+b+c}$

$=\frac{2(a+b+c+d)}{a+b+c+d}=2$
$\Rightarrow a+b+c-d=2d; b+c+d-a=2a; c+d+a-b=2b; d+a+b-c=2c$

$\Rightarrow a+b+c=3d; b+c+d=3a; c+d+a=3b; d+a+b=3c$

Khi đó:

\(P=\frac{a+b+c}{a}.\frac{b+c+d}{b}.\frac{c+d+a}{c}.\frac{a+b+d}{d}\\ =\frac{3d}{a}.\frac{3a}{b}.\frac{3b}{c}.\frac{3c}{d}=81\)

23 tháng 1 2017

Ta có \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

\(\Leftrightarrow\frac{x^2}{a^2+b^2+c^2}+\frac{y^2}{a^2+b^2+c^2}+\frac{z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

\(\Leftrightarrow\frac{x^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}+\frac{y^2}{a^2+b^2+c^2}-\frac{y^2}{b^2}+\frac{z^2}{a^2+b^2+c^2}-\frac{z^2}{c^2}=0\)

\(\Leftrightarrow x^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)+y^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)+z^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)=0\)

Do \(\left\{\begin{matrix}\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\\\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\\\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\end{matrix}\right.\ne0\)\(a,b,c\ne0\)

\(\Rightarrow\left\{\begin{matrix}x^2=0\\y^2=0\\z^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}x=0\\y=0\\z=0\end{matrix}\right.\)

Ta có \(A=x^{2008}+y^{2008}+z^{2008}\)

\(\Rightarrow A=0+0+0\)

\(\Rightarrow A=0\)

Vậy A = 0

21 tháng 10 2021

Bài 3: 

a: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab=7^2-4\cdot12=1\)

b: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=7^3-3\cdot12\cdot7\)

\(=343-252=91\)