Một người đi xe máy từ A-B với vận tốc 40km/h. Sau khi đến B và nghỉ lại ở đó 30 phút, người đó lại đi từ B về A với vận tốc 30km/h. Tổng thời gian cả đi lẫn về là 9h15' (kể cả thời gian nghỉ lại ở B). Tính độ dài quãng đường AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài quãng đường AB là x
Thời gian đi là x/40(h)
Thời gian về là x/30(h)
Theo đề, ta có: x/40+x/30=8,75
hay x=150
gọi quãng đường AB là x(x>0)km
thời gian đi từ A đến B là x/40 h
thời gian từ B về A là x/30 h
vì tổng thời gian cả đi và về là 9h15p=9.25h(tính cả thời gian nghỉ là 30p=0.5h)
nên ta có pt \(\dfrac{x}{40}+\dfrac{x}{30}+0.5=9.25\)
giải pt x=150
vậy quãng đường AB dài 150 km
Gọi quãng đường AB là x
thời gian đi từ A → B là : \(\frac{x}{40}\)
thời gian đi từ B → A là \(\frac{x}{30}\)
Vì thời gian đi lẫn về là 9h15' - 30' = 8h45' = 8,75h ; ta có pt :
\(\frac{x}{40}+\frac{x}{30}\) = 8,75 ⇌ 3x + 4x = 1050 ⇌ 7x = 1050 ⇌ x = 150
Vậy quãng đường AB dài 150km
gọi x là quãng đường AB (x>0)
vận tốc lúc đi là 40km/h nên thời gian đi là x/40
vận tốc lúc về là 30km/h nên thời gian về là x/30
dọc đường người đó nghi lai la 30 phut= 1/2 h
ta lập được phương trình sau:
x/40+x/30+1/2=37/4 (37/4=9h15')
<=>(3x+4x)/120=35/4 <=> 7x/120=35/4 <=>28x=4200 <=>x=150(km/h)
Gọi quãng đường AB là x ( x > 0 )
Theo bài ra ta có pt \(\dfrac{x}{30}+\dfrac{1}{2}+\dfrac{x}{40}=5+\dfrac{1}{6}\Rightarrow x=80\left(tm\right)\)
Đổi : 30 phút = 0,5 giờ
9 giờ 15 phút = 9,25 giờ
Gọi độ dài quãng đường AB là x ( km ) (x > 0 )
⇒ Thời gian đi từ A đến B là \(\dfrac{x}{40}\) ( km )
Thời gian đi từ B về A là \(\dfrac{x}{30}\) ( km )
Vì tổng thời gian cả đi lẫn về là 9,25 giờ ( cả thời gian nghỉ ở B ).
⇒ Ta có phương trình:
\(\dfrac{x}{30}+\dfrac{x}{40}+0,5=9,25\)
⇔ \(x\left(\dfrac{1}{30}+\dfrac{1}{40}\right)=8,75\)
⇔ \(x.\dfrac{7}{120}=8,75\)
⇔ \(x=150\) ( km ) ( thỏa mãn )
Vậy quãng đường AB dài 150 km.
9h15p=9,25h
30p=0,5h
Gọi quãng đường AB là x (km) đk: x>0
Thời gian xe đi từ A đến B: \(\dfrac{x}{40}\)(h)
Thời gian xe đi từ B về A: \(\dfrac{x}{30}\)(h)
Theo bài, ta có pt:
\(\dfrac{x}{40}+\dfrac{x}{30}+0,5=9,25\)
\(\Leftrightarrow\dfrac{x}{40}+\dfrac{x}{30}=8,75\)
\(\Leftrightarrow70x=10500\)
\(\Leftrightarrow x=150\) (thỏa mãn đk)
Vậy quãng đường AB dài 150 km
Đổi 30' = \(\dfrac{1}{2}\) h; 9h15' = \(\dfrac{37}{4}\)
Gọi quãng đường AB là x km (x > 0)
Ta có: Thời gian người đó đi từ A đến B là \(\dfrac{x}{40}\)h
Thời gian người đó đi từ B về A là \(\dfrac{x}{30}\)h
Theo đề bài ta có phương trình:
\(\dfrac{x}{40}+\dfrac{x}{30}+\dfrac{1}{2}=\dfrac{37}{4}\)
⇔ \(\dfrac{3x}{120}+\dfrac{4x}{120}+\dfrac{60}{120}=\dfrac{1110}{120}\)
⇔ 3x + 4x + 60 = 1110
⇔ 7x = 1110 - 60
⇔ 7x = 1050
⇔ x = 150 (thỏa mãn)
Vậy quãng đường AB dài 150 km