chứng minh 2 mũ 1 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + ....... + 2 mũ 2016 chia hết cho 3 và 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^1+2^2+2^3+...+2^{2016}\)
\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2015}+2^{2016}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2015}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{2015}\right)⋮3\)
\(2^1+2^2+2^3+...+2^{2016}\)
\(=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2014}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{2014}\right)⋮7\)
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)
Các ý dưới bạn làm tương tự nhé.
Úi gời cơi cộng chấm chấm chấm :)))
+ Ta có: \(A=2+2^2+2^3+2^4+...+2^{2010}\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=2.3+2^3.3+...+2^{2009}.3\)
\(A=3\left(2+2^3+...+2^{2010}\right)⋮3\)
-> Đpcm
+ Ta có: \(A=2+2^2+2^3+2^4+...+2^{2010}\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+....+2^{2008}\left(1+2+2^2\right)\)
\(A=2.7+2^4.7+...+2^{2008}.7\)
\(A=7\left(2+2^4+...+2^{2008}\right)⋮7\)
-> Đpcm
a) A = 21 + 22 + 23 + 24 +...+ 22010
=> A = (2 + 22) + 22.(2 + 22) + ... + 22008.(2 + 22)
=> A = 6 + 22.6 + ... + 22008.6
=> A = 6 . (1 + 22 + ... + 22008) \(⋮\)3 => A \(⋮\)3.
A = 21 + 22 + 23 +...+ 22010
=> A = (21 + 22 + 23) + ... + (22008 + 22009 + 22010)
=> A = 14 + ... + 22007.(2 + 22 + 23)
=> A = 14 + ... + 22007.14
=> A = 14.(1+...+22007) \(⋮\)7 => A \(⋮\)7
b) Để B chia hết cho 4 thì bạn gộp 2 số lại ( được 1 thừa số là 12 ) => B chia hết cho 4.
Để B chia hết cho 7 thì bạn gộp 3 số lại ( được 1 thừa số là 39 ) => B chia hết cho 13.
Sorry, bài B không làm chặt chẽ được vì mình bận đi học rồi.
Chúng bạn học tốt.
1+7+7 mũ 2+7 mũ 3......+7 mũ 100.Tính a,a là tổng dãy số trên
\(=\left(1+2+2^2+2^3\right)+2^4\left(1+2+2^2+2^3\right)+....+2^{92}\left(1+2+2^2+2^3\right)\)
\(=15+15.2^4+...+15.2^{92}\)
\(=15\left(1+2^4+...+2^{92}\right)⋮15\left(đpcm\right)\)
Đặt A=2+22+23+24+...+22016
A=2(1+3)+23(1+2)+...22015(1+2)
A=2.3+23.3+...+22015.3
A=3.(2+23+...+22015)chia hết cho 3
A=(2+22+23)+(24+25+26)+...+(22014+22015+22016)
A=2(1+2+22)+24(1+2+22)+...+22014(1+2+22)
A=2.7+24.7+...+22014.7
A=7.(2+24+...+22016)chia hết cho 7