tim ƯC cua 7n + 3 va 8n - 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(d=\left(8n-1,7n+3\right)\).
Ta có: \(\hept{\begin{cases}8n-1⋮d\\7n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}7\left(8n-1\right)⋮d\\8\left(7n+3\right)⋮d\end{cases}}\Rightarrow\left[7\left(8n-1\right)-8\left(7n+3\right)\right]⋮d\Leftrightarrow31⋮d\)
Suy ra \(d=1\)hoặc \(d=31\).
Để \(d=1\)thì \(d\ne31\)suy ra \(8n-1⋮̸31\)
\(\Rightarrow8n-1\ne31k,\left(k\inℤ\right)\)
\(\Leftrightarrow n\ne\frac{31k+1}{8},\left(k\inℤ\right)\)
\(\text{Đặt }\left(7n+10,5n+7\right)=d\)
\(\Rightarrow\hept{\begin{cases}\left(7n+10\right)⋮d\\\left(5n+7\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left[5\left(7n+10\right)\right]d\\\left[7\left(5n+7\right)\right]⋮d\end{cases}}\)
\(\Rightarrow\left[5\left(7n+10\right)-7\left(5n+7\right)\right]⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d=1\)
\(\text{Vậy }\left(7n+10,5n+7\right)=1\)
Gọi d là ƯCLN của 7n + 10 và 5n + 7
=> 7n + 10 và 5n + 7 chia hết cho d
<=> 5.(7n + 10) và 7.(5n + 7) chia hết cho d
<=> 35n + 50 và 35n + 49 chai hết cho d
=> (35n + 50) - (35n + 49) chia hết cho d
= > 1 chia hết d => d = 1
Vậy ƯCLN của 7n + 10 và 5n + 7 là 1
a,Gọi ucln của 7n+10 và 5n+7 là d (d thuộc n)
ta có: 7n+10-(5n+7)chia hết cho d
->5.(7n+10)-7.(5n+7)chia hết cho d
35n+50-35n-49chia hết cho d
hay 0+1 chia hết cho d
->d thuộc u(1)->7n+10 và 5n+7 là số nguyên tố
ucln của 2 số là 1
b,LÀM TƯƠNG TỰ NHƯ CÂU A