K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 5 2021

Pt đầu chắc là sai đề (chắc chắn), bạn kiểm tra lại

Với pt sau:

Nhận thấy một ẩn bằng 0 thì 2 ẩn còn lại cũng bằng 0, do đó \(\left(x;y;z\right)=\left(0;0;0\right)\) là 1 nghiệm

Với \(x;y;z\ne0\)

Từ pt đầu ta suy ra \(y>0\) , từ đó suy ra \(z>0\) từ pt 2 và hiển nhiên \(x>0\) từ pt 3

Do đó:

\(\left\{{}\begin{matrix}y=\dfrac{2x^2}{x^2+1}\le\dfrac{2x^2}{2x}=x\\z=\dfrac{3y^3}{y^4+y^2+1}\le\dfrac{3y^3}{3\sqrt[3]{y^4.y^2.1}}=y\\x=\dfrac{4z^4}{z^6+z^4+z^2+1}\le\dfrac{4z^4}{4\sqrt[4]{z^6z^4z^2}}=z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y\le x\\z\le y\\x\le z\end{matrix}\right.\) \(\Rightarrow x=y=z\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)

Vậy nghiệm của hệ là \(\left(x;y;z\right)=\left(0;0;0\right);\left(1;1;1\right)\)

a: \(\left\{{}\begin{matrix}\dfrac{x}{35}-y=2\\y-\dfrac{x}{50}=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{x-35y}{35}=2\\\dfrac{50y-x}{50}=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-35y=70\\-x+50y=50\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15y=120\\x-35y=70\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=8\\x=70+35y=70+35\cdot8=350\end{matrix}\right.\)

b: ĐKXĐ: x<>0 và y<>0

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\\\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{3}{16}\\\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{y}=\dfrac{3}{16}-\dfrac{1}{4}=\dfrac{-1}{16}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=48\\\dfrac{1}{x}=\dfrac{1}{16}-\dfrac{1}{48}=\dfrac{2}{48}=\dfrac{1}{24}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=24\\y=48\end{matrix}\right.\left(nhận\right)\)

18 tháng 1 2021

b) ĐKXĐ: \(x,y\neq 0\).

Ta có: \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2y=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=\dfrac{1}{x}-\dfrac{1}{y}\\2y=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=\dfrac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-y=0\\xy=-1\end{matrix}\right.\\2y=x^3+1\end{matrix}\right.\).

Với x - y = 0 suy ra x = y. Do đó \(2x=x^3+1\Leftrightarrow\left(x-1\right)\left(x^2+x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1=y\left(TMĐK\right)\\x=\pm\dfrac{\sqrt{5}-1}{2}=y\left(TMĐK\right)\end{matrix}\right.\).

Với xy = -1 suy ra \(y=-\dfrac{1}{x}\). Do đó \(x^3+\dfrac{2}{x}+1=0\Rightarrow x^4+x+2=0\). Phương trình vô nghiệm do \(x^4+x+2=\left(x^2-\dfrac{1}{2}\right)^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{2}>0\).

Vậy...

19 tháng 1 2021

Em cảm ơn ạ !

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

1.

HPT  \(\left\{\begin{matrix} (x+1)(y-1)=xy+4\\ (2x-4)(y+1)=2xy+5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} xy-x+y-1=xy+4\\ 2xy+2x-4y-4=2xy+5\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} -x+y=5\\ 2x-4y=9\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x=\frac{-29}{2}\\ y=\frac{-19}{2}\end{matrix}\right.\)

Vậy.............

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

2.

ĐKXĐ: $x\in\mathbb{R}$

$x^2+x-2\sqrt{x^2+x+1}+2=0$

$\Leftrightarrow (x^2+x+1)-2\sqrt{x^2+x+1}+1=0$

$\Leftrightarrow (\sqrt{x^2+x+1}-1)^2=0$

$\Rightarrow \sqrt{x^2+x+1}=1$

$\Rightarrow x^2+x=0$

$\Leftrightarrow x(x+1)=0$

$\Rightarrow x=0$ hoặc $x=-1$

18 tháng 5 2021

b) Áp dụng bđt Svac-xơ:

\(\dfrac{1}{x}+\dfrac{9}{y}+\dfrac{16}{z}\ge\dfrac{\left(1+3+4\right)^2}{x+y+z}\ge\dfrac{64}{4}=16>9\)

=> hpt vô nghiệm

c) Ở đây x,y,z là các số thực dương

Áp dụng cosi: \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)=3xyz\)

Dấu = xảy ra khi \(x=y=z=\dfrac{3}{3}=1\)

 

NV
17 tháng 1 2022

a.Hệ thứ nhất kì quặc thật:

\(\Leftrightarrow\sqrt{y^2+xy}+\sqrt{x+y}=\sqrt{x^2+y^2}+2\)

\(\Leftrightarrow\sqrt{x^2+y^2}-\sqrt{y^2+xy}=\sqrt{x+y}-2\)

\(\Leftrightarrow\dfrac{x\left(x-y\right)}{\sqrt{x^2+y^2}+\sqrt{y^2+xy}}=\dfrac{x+y-4}{\sqrt{x+y}+2}\)

\(\Rightarrow\left(x-y\right)\left(x+y-4\right)=\left(\dfrac{\sqrt{x^2+y^2}+\sqrt{y^2+xy}}{x\sqrt{x+y}+2x}\right)\left(x+y-4\right)^2\ge0\) (1)

\(2.\dfrac{x}{2}\sqrt{y-1}+2.\dfrac{y}{2}\sqrt{x-1}\le\dfrac{x^2}{4}+y-1+\dfrac{y^2}{4}+x-1\)

\(\Rightarrow\dfrac{x^2+4y-4}{2}\le\dfrac{x^2+y^2+4x+4y-8}{4}\)

\(\Leftrightarrow x^2-y^2+4y-4x\le0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y-4\right)\le0\) (2)

(1);(2) \(\Rightarrow\left(x-y\right)\left(x+y-4\right)=0\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=2\)

 

NV
17 tháng 1 2022

b.

\(x^3-x^2y+2y^2-2xy=0\)

\(\Leftrightarrow x^2\left(x-y\right)-2y\left(x-y\right)=0\)

\(\Leftrightarrow\left(x^2-2y\right)\left(x-y\right)=0\)

\(\Leftrightarrow y=x\) (loại \(x^2-2y=0\) do ĐKXĐ \(x^2-2y-1\ge0\))

Thế vào pt dưới

\(2\sqrt{x^2-2x-1}+\sqrt[3]{x^3-14}=x-2\)

\(\Leftrightarrow2\sqrt{x^2-2x-1}+\dfrac{x^3-14-\left(x-2\right)^3}{\sqrt[3]{\left(x^3-14\right)^2}+\left(x-2\right)\sqrt[3]{x^3-14}+\left(x-2\right)^2}=0\)

\(\Leftrightarrow\sqrt[]{x^2-2x-1}\left(2+\dfrac{6\sqrt[]{x^2-2x-1}}{\sqrt[3]{\left(x^3-14\right)^2}+\left(x-2\right)\sqrt[3]{x^3-14}+\left(x-2\right)^2}\right)=0\)

\(\Leftrightarrow\sqrt{x^2-2x-1}=0\)

12 tháng 2 2022

a,

\(\Leftrightarrow\left(\left(2x^2-4\right)-2\left(x+1\right)^2\right)< 0\)

\(\Leftrightarrow2x^2-4-2\left(x^2+2x+1\right)< 0\)

\(\Leftrightarrow2x^2-4-2x^2-4x-2< 0\)

\(\Leftrightarrow-4x-6< 0\)

\(\Rightarrow x+\dfrac{3}{2}>0\)

\(\Rightarrow x>-\dfrac{3}{2}\)

\(x\in\left\{-\dfrac{3}{2};\infty\right\}\)

12 tháng 2 2022

b/

\(\Leftrightarrow\left(x-3\right)^2-5+6x< 0\)

\(\Leftrightarrow x^2-6x+9-5+6x< 0\)

\(\Leftrightarrow x^2+4< 0\) ( điều này vô lý vì không có giá trị nào của x khiến x^2+4<0)

từ trên suy ra:

không có giá trị nào của x để pt này đúng .

 

1:

a: =>(|x|+4)(|x|-1)=0

=>|x|-1=0

=>x=1; x=-1

b: =>x^2-4>=0

=>x>=2 hoặc x<=-2

d: =>|2x+5|=2x-5

=>x>=5/2 và (2x+5-2x+5)(2x+5+2x-5)=0

=>x=0(loại)