bài 1:CMR
a) n(n+8)(n+13) chia hết cho 3 với n là số tự nhiên
b)Nếu 10a+b chia hết cho 13 thì a+4b chia hết cho 13.Với a;b là số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10a+b chia hết cho 13
=> 40a +4b-49a chia hết cho 13
hay a+4b chí hết cho 13
Do \(\left(10a+b\right)⋮13\Rightarrow10a+b=13k\left(k\in N\right)\)
\(\Rightarrow b=13k-10a\)
\(\Rightarrow a+4b=a+4.\left(13k-10a\right)\)
\(=a+52k-40a\)
\(=52k-39a\)
\(=13\left(4k-3a\right)⋮13\)
Vậy \(\left(10a+b\right)⋮13\Rightarrow\left(a+4b\right)⋮13\)
a) Gọi a+4b là c, 10a+b là d.Ta có:
a+4b= c
10a+b = d
=> 3a+ 12b =3c
10a + b = d
=> 3c+d = 10a+3a+12b+b = 13a + 13b =13(a+b) => 3c + d chia hết cho 13
Mà: 3c+d chia hết cho 13
3c chia hết cho 13
=> d chia hết cho 13 hay 10a+ b chia hết cho 13
Đáp án cần chọn là: D
Xét 10.(a+4.b)=10.a+40.b=(10.a+b)+39.b .
Vì (10.a+b)⋮13 và 39b⋮13 nên 10.(a+4.b)⋮13 .
Do 10 không chia hết cho 13 nên suy ra (a+4.b)⋮13 .
Vậy nếu 10a+b chia hết cho 13 thì a+4b chia hết cho 13
\(10a+b=\left(10a+40b\right)-39b=10\left(a+4b\right)-39b\)
ta có: a+4b chia hết cho 13 => 10(a+4b) chia hết cho 13
39b=13.3b => chia hết cho 13
=> 10a+b chia hết cho 13
Nếu a + 4b chia hết cho 13 -> 10a + 40b chia hết cho 13 (1).
Lấy (1) - 39b (luôn chia hết cho 13) đc 10a +b
\(\Rightarrow\) 10a + b chia hết cho 13. (đpcm)
Ngược lại cũng tương tự.
a+4b chia hết cho 13
=>10(a+4b)chia hết cho 13
=>10a+40bchia hết cho 13 (1)
giả sử 10a+b chia hết cho 13 (2)
từ (1)và (2)
=>(10a+40b)-(10a+40b)chia hết cho 13
=>10a+40b-10a-40b chia hết cho 13
=>39a chia hết cho 13
=>13(3a)chia hết cho 13(thỏa mãn)☺