I. Tính nhanh tổng sau
1 + 2 + 4 + 8 + 18 + ...+8192
II. Tính các tổng sau
a. 1 + 2 + 3 + 4+...+ n
b. 2 + 4 + 6 + +...+2n
c. 1 + 4 + 7 + 10 +...+ 2005
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
$A=(1-3)+(5-7)+(9-11)+...+(2001-2003)+2005$
$=(-2)+(-2)+(-2)+...+(-2)+2005$
$=(-2).501+2005=-1002+2005=1003$
b.
$B=(1-2-3+4)+(5-6-7+8)+...+(1989-1990-1991+1992)+(1993-1994)$
$=0+0+....+0+(1993-1994)=0+(-1)=-1$
a) \(1+2+3+4+...+n\)
\(=\left(n+1\right)\left[\left(n-1\right):1+1\right]:2\)
\(=\left(n+1\right)\left(n-1+1\right):2\)
\(=n\left(n+1\right):2\)
\(=\dfrac{n\left(n+1\right)}{2}\)
b) \(2+4+6+..+2n\)
\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)
\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)
\(=\left(n+1\right)\left(n-1+1\right)\)
\(=n\left(n+1\right)\)
c) \(1+3+5+...+\left(2n+1\right)\)
\(=\left[\left(2n+1\right)+1\right]\left\{\left[\left(2n-1\right)-1\right]:2+1\right\}:2\)
\(=\left(2n+1+1\right)\left[\left(2n-1-1\right):2+1\right]:2\)
\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)
\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)
\(=\left(n+1\right)\left(n-1+1\right)\)
\(=n\left(n+1\right)\)
d) \(1+4+7+10+...+2005\)
\(=\left(2005+1\right)\left[\left(2005-1\right):3+1\right]:2\)
\(=2006\cdot\left(2004:3+1\right):2\)
\(=2006\cdot\left(668+1\right):2\)
\(=1003\cdot669\)
\(=671007\)
e) \(2+5+8+...+2006\)
\(=\left(2006+2\right)\left[\left(2006-2\right):3+1\right]:2\)
\(=2008\cdot\left(2004:3+1\right):2\)
\(=1004\cdot\left(668+1\right)\)
\(=1004\cdot669\)
\(=671676\)
g) \(1+5+9+...+2001\)
\(=\left(2001+1\right)\left[\left(2001-1\right):4+1\right]:2\)
\(=2002\cdot\left(2000:4+1\right):2\)
\(=1001\cdot\left(500+1\right)\)
\(=1001\cdot501\)
\(=501501\)
1. Đặt A × 2 = 2 + 4 +8 +16 + 32 + ....+ 16384
Cùng thêm 1 và bớt 1 ta có như sau:
A × 2 = 1 + 2 + 4 + 8 + 16 + .....+ 1892 + 16384 -1
A × 2 = A + 16384 - 1
A = 16384 -1
A = 16383
2.
1, đề sai
2,Đây là tổng n số hạng đầu cấp số cộng có công sai d = 2 và u1= 2
=> s = (2+ 2n)* (n/2) <=> s = (1+n)n
3,1+3+5+7+...+ (2n+1) = [1+ (2n+1)] + [3 + (2n - 1)] + .... = [1+ (2n+1)] x [(n+1)/2]
vì 1 + (2n+1) = 3 + (2n-1) =...
Từ 1 đến 2n+1 số có 2n+1 số, trong đó có n số chẵn và n+1 số lẽ, do 1 và 2n+1 là số lẽ mà.
Do đó có (n+1)/2 cặp tất cả
Bài 7:
Số phần kẹo Hùng đã cho Hà và Hồng là:
\(\dfrac{2}{7}+\dfrac{1}{7}=\dfrac{3}{7}\left(phần\right)\)
Hùng còn lại số phần của gói kẹo là:
\(\dfrac{6}{7}-\dfrac{3}{7}=\dfrac{3}{7}\left(phần\right)\)
1:
2 3/4
5 6/5
3 3/9
7 6/8
2:
1/3 + 2/3 + (3/4 + 1/4) = 2
=2
= 4 5/10
a, S= [1+(-3)]+[5+(-7)]+.......+[15+(-17)]
S= (-2)+(-2)+......+(-2)
Có 10 số (-2)
S= (-2) x 10 =(-20)
b, S =[(-2)+4]+[(-6)+8]+......+[16+(-18)]
S=2+2+2+......+2
Có 11 số 2
S= 2 x 11 =22
I.
Ta có:
1 + 2 = 3 (Số liền trước 4)
1 + 2 + 4 = 7 (Số liền trước 8)
1 + 2 + 4 + 8 = 15 (Số liền trước 16)
<=> 1 + 2 + 4 + 8 + 16 + ... + 4096 sẽ bằng số liền trước 8192 => Số liền trước 8192 là 8191:
=> 8191 + 8192 = 16383
II.
a)
Áp dụng theo công thức:
Số số hạng:
\(\left(n-1\right):1+1=n\) (số hạng)
Tổng:
\(\left(n+1\right)\frac{n}{2}\)
b)
Số số hạng:
\(\frac{2n-2}{2}+1=\frac{2\left(n-1\right)}{2}+1=n\)
Tổng:
\(\frac{\left(2n+2\right)n}{2}=\left(n+1\right)n\)
c)
Số số hạng:
\(\left(2005-1\right):3+1=669\) (số hạng)
Tổng:
\(\left(2005+1\right).669:2=671007\)