K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2015

a) Tam giác ABC đồng dạng với tam giác DEF theo tỉ số đồng dạng 2/3

=> \(\frac{AB}{DE}=\frac{BC}{EF}=\frac{AC}{DF}=\frac{2}{3}\)=> \(\frac{AB}{DE}=\frac{BC}{EF}=\frac{AC}{DF}=\frac{AB+BC+AC}{DE+EF+DF}=\frac{2}{3}\)

=> \(\frac{C_{ABC}}{C_{DEF}}=\frac{2}{3}\) (Kí hiệu \(C\) là chu vi) => \(C_{DEF}=\frac{3}{2}.C_{ABC}=\frac{3}{2}.8=12\) cm

b) 

D E F K A B C H

+) Dễ có tam giác DEK đồng dạng với tam giác ABH (do góc DEK = ABH; góc DKE = AHB)

=> \(\frac{AB}{DE}=\frac{AH}{DK}\) Mà \(\frac{AB}{DE}=\frac{2}{3}\Rightarrow\frac{AH}{DK}=\frac{2}{3}\)

+) Có : \(\frac{S_{ABC}}{S_{DEF}}=\frac{\frac{1}{2}.AH.BC}{\frac{1}{2}.DK.EF}=\frac{AH}{DK}.\frac{BC}{EF}=\frac{2}{3}.\frac{2}{3}=\frac{4}{9}\)

=> \(S_{ABC}=\frac{4}{9}.S_{DEF}=\frac{4}{9}.27=12\) cm2

*) Tổng quát: Nếu tam giác ABC đồng dạng với tam giác DEF theo tỉ số đồng dạng k

=> \(\frac{C_{ABC}}{C_{DEF}}=k;\frac{S_{ABC}}{S_{DEF}}=k^2\)

21 tháng 4 2020

a,bc và pk

cạnh 156 tỉ số 16

58

76

23 tháng 3 2022
ABC cạnh 156 tỉ số 16 58 78
3 tháng 3 2021

a)

\(\text{Δ A'B'C' ∼ Δ ABC}\) theo tỉ số đồng dạng k = \(\dfrac{3}{5}\)

⇒ \(\dfrac{A'B'}{AB}=\dfrac{B'C'}{BC}=\dfrac{A'C'}{AC}=k=\dfrac{3}{5}\)              (1)

Áp dúng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{A'B'}{AB}=\dfrac{B'C'}{BC}=\dfrac{A'C'}{AC}=\dfrac{A'B'+B'C'+A'C'}{AB+BC+AC}=\dfrac{C_{A'B'C'}}{C_{ABC}}\)                 (2)

Từ (1) và (2) ⇒ \(\dfrac{C_{A'B'C'}}{C_{ABC}}=\dfrac{3}{5}\)           (*)

b)

Theo đề ra, ta có:

\(C_{ABC}-C_{A'B'C'}=40\left(dm\right)\)

⇒ \(C_{ABC}=40+C_{A'B'C'}\)      (**)

Thay (**) vào (*), ta được:

\(\dfrac{C_{A'B'C'}}{40+C_{A'B'C'}}=\dfrac{3}{5}\)

⇒ \(5C_{A'B'C'}=120+3C_{A'B'C'}\)

⇔ \(2C_{A'B'C'}=120\)

⇒ \(C_{A'B'C'}=60\)     (dm)

⇒ \(C_{ABC}=40+60=100\)   (dm)

17 tháng 5 2021

Ta có :  \(\frac{\Delta_{ABC}}{\Delta_{DÈF}}=\frac{3}{5}\Rightarrow\frac{12}{\Delta_{DEF}}=\frac{3}{5}\)

\(\Rightarrow\Delta_{DEF}=\frac{3}{5}:\frac{1}{12}=\frac{36}{5}=7,2\)cm 

Vậy chu vi tam giác DEF là 7,2 m 

17 tháng 5 2021

\(\text{Ta có:}\)\(\Delta ABC\text{∽}\Delta DEF\)\(\text{theo tỉ số đồng dạng}\)\(k=\frac{3}{5}\)

\(\text{Nửa chu vi}\)\(\Delta ABC\)\(=\)\(\text{nửa chu vi}\)\(\Delta DEF=\frac{3}{5}\)

\(\text{Mà chu vi}\)\(\Delta ABC=12cm\)

\(\text{Nửa chu vi}\)\(\Delta ABC\)\(:\)\(12:2=6cm\)

\(\text{Nửa chu vi}\)\(\Delta DEF\)\(:\)\(6:\frac{3}{5}=10cm\)

\(\text{Chu vi}\)\(\Delta DEF\)\(:\)\(10.2=20cm\)

ΔABC~ΔDEF theo hệ số tỉ lệ là k=2/3

=>\(\dfrac{C_{ABC}}{C_{DEF}}=\dfrac{2}{3}\)

=>\(\dfrac{42}{C_{DEF}}=\dfrac{2}{3}\)

=>\(C_{DEF}=42\cdot\dfrac{3}{2}=63\left(cm\right)\)

17 tháng 1

Ta có: 

\(\Delta ABC\sim\Delta DEF\left(gt\right)\)

\(\Rightarrow\dfrac{C_{ABC}}{C_{DEF}}=k=\dfrac{2}{3}\)

\(\Rightarrow\dfrac{42}{C_{DEF}}=\dfrac{2}{3}\Rightarrow C_{DEF}=63\) (cm) 

2 tháng 4 2019

\(\Delta ABC\infty\Delta DEF\Rightarrow\frac{SABC}{SDEF}=4^2=16\)

\(\Rightarrow SDEF=\frac{SABC}{16}=\frac{100}{16}=6,25\)

a: ΔABC đồng dạng vơi ΔDEF

=>\(\dfrac{C_{ABC}}{C_{DEF}}=k=\dfrac{2}{3}\)

b:AH/DI=k=2/3

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a) Ta có \(\Delta ABC\backsim\Delta DEF\) theo tỉ số đồng dạng \(k = \frac{2}{5}\) nên

\(\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}} = \frac{{BC}}{{EF}} = \frac{2}{5} \Rightarrow AB = \frac{2}{5}DE;AC = \frac{2}{5}DF;BC = \frac{2}{5}EF\).

Chu vi tam giác \(ABC\) là:

\({C_{ABC}} = AB + AC + BC\) (đơn vị độ dài).

Chu vi tam giác \(DEF\) là:

\({C_{DEF}} = DE + DF + EF\)

Tỉ số chu vi của \(\Delta ABC\) và \(\Delta DEF\) là:

\(\frac{{{C_{ABC}}}}{{{C_{DEF}}}} = \frac{{AB + AC + BC}}{{DE + DF + EF}} = \frac{{\frac{2}{5}DE + \frac{2}{5}DF + \frac{2}{5}EF}}{{DE + DF + EF}} = \frac{{\frac{2}{5}\left( {DE + DF + EF} \right)}}{{DE + DF + EF}} = \frac{2}{5}\).

b) Chu vi tam giác \(ABC\) là:

\(36:\left( {5 - 2} \right).2 = 24\left( {cm} \right)\)

Chu vi tam giác \(DEF\) là:

\(36:\left( {5 - 2} \right).5 = 60\left( {cm} \right)\)

Vậy chu vi tam giác \(ABC\) là 24cm; chu vi tam giác \(DEF\) là 60cm.