Chứng tỏ rằng với mọi số nguyên a và b ta luôn có :
a) la+bl nhỏ hơn hoặc bằng l a l + l b l
b) - l a l nhỏ hơn hoặc bằng a nhỏ hơn hoặc bằng l a l
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(a,b>0\)
Ta có theo BĐT Cô-si:
\(a+b\ge2\sqrt{ab}\), và \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}\cdot\frac{2}{\sqrt{ab}}=4\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Rightarrow\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{1}{a+b}\) hay \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)
(Dấu bằng xảy ra khi và chỉ khi \(a=b\))
Vậy \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) với \(a,b>0\).
Giải:
\(a,b\) là các số dương \(\Leftrightarrow\dfrac{a}{b}>0\)
Không giảm tính tổng quát
Ta giả sử \(a\ge b\Leftrightarrow a=b+m\left(m\ge0\right)\)
Ta có:
\(\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{b+m}{b}+\dfrac{b}{b+m}\)
\(=1+\dfrac{m}{b}+\dfrac{b}{b+m}\ge1+\dfrac{m}{b+m}+\dfrac{b}{b+m}\)
\(=1+\dfrac{m+b}{b+m}=1+1=2\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}m=0\\a=b\end{matrix}\right.\)
Vậy \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) (Đpcm)
Nhận xét:
Trong một BĐT có chứa chữ, nếu các chữ \(a\) và \(b\) có vai trò như nhau, ta có thể thay \(a\) bởi \(b\); \(b\) bởi \(a\), do đó ta có thể sắp thú tự tùy ý cho nên trong cách giải trên ta đã giả sử \(a\ge b\) mà không sợ mất tính tổng quát.
Ta có:
\(p\le n\le1,5p\)
\(\Leftrightarrow3p\le n+p+e\le3,5p\)
\(\Leftrightarrow3p\le18\le3,5p\)
\(\Leftrightarrow6\ge p\ge5,14\)
Với p=6 thì e=6 và n=6
a, giá trị tuyệt đối của a+b luôn nhỏ hơn giá trị tuyệt đối của a cộng giá trị tuyệt đối củab
dấu bằng xảy ra khi và chỉ khi
a=b=0
b, - /a/ < a ( với mọi a thuộc Z)
dấu bằng xảy ra khi a=0
tương tự ta có
-/a/ < a
dấu bằng xảy ra khi
a=0
a chỉ có thể băng 0 thôi!!