cho tam giac ABC co 3 canh lan luot la a,b,c thoa man a3+b3+c3=3abc.Tinh goc ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=AH^2\)
=>HB*HC=4^2=16
mà HB+HC=10cm
nên HB,HC là hai nghiệm của phương trình:
\(x^2-10x+16=0\)
=>(x-8)(x-2)=0
=>\(\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
Do đó, chúng ta sẽ có 2 trường hợp là \(\left[{}\begin{matrix}BH=8cm;CH=2cm\\BH=2cm;CH=8cm\end{matrix}\right.\)
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
a3 + b3 + c3 =3abc => a3 + b3 + c3 - 3abc = 0 => (a+b+c)(a2 + b2 + c2 - ab - bc - ac ) =0
=> a2 + b2 + c2 - ab - bc - ac =0 (vì a+b+c\(\ne\)0)
=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac=0
=>(a-b)2 + (b-c)2 + (a-c)2 =0 => a=b=c => tam giáp ABC đều => góc ABC bằng 60 độ