Cho x và y tỉ lệ nghịch biết x1=5 , x2=2 và y1+y2=21 . Tính y1 và y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x,y tỉ lệ nghịch nên \(x_1y_1=x_2y_2\)
\(\Rightarrow\dfrac{y_1}{x_2}=\dfrac{y_2}{x_1}=\dfrac{y_1}{2}=\dfrac{y_2}{5}=\dfrac{y_2+y_1}{2+5}=\dfrac{21}{7}=3\\ \Rightarrow\left\{{}\begin{matrix}y_1=2\cdot3=6\\y_2=3\cdot5=15\end{matrix}\right.\)
a) Ta có : \(\frac{x_1}{x_2}=\frac{y_2}{y_1}\Rightarrow\frac{y_1}{x_2}=\frac{y_2}{x_1}=\frac{y_1+y_2}{x_2+x_1}\left(1\right)\)
Vì \(x_1=5,x_2=2\)và \(y_1+y_2=21\)nên từ \(\left(1\right)\)ta có :
\(\frac{y_1}{2}=\frac{y_2}{5}=\frac{y_1+y_2}{2+5}=\frac{21}{7}=3\left(2\right)\)
Từ (2) => \(\orbr{\begin{cases}\frac{y_1}{2}=3\\\frac{y_2}{5}=3\end{cases}}\Rightarrow\orbr{\begin{cases}y_1=6\\y_2=15\end{cases}}\)
b) Ta có : \(\frac{x_1}{x_2}=\frac{y_2}{y_1}=\frac{2x_1}{2x_2}=\frac{3y_2}{3y_1}=\frac{2x_1-3y_2}{2x_2-3y_1}\left(1\right)\)
Vì \(x_2=3,y_1=7\)và \(2x_1-3y_2=30\)nên từ \(\left(1\right)\)ta có :
\(\frac{x_1}{3}=\frac{y_2}{7}=\frac{2x_1-3y_2}{2\cdot3-3\cdot7}=\frac{30}{-15}=-2\left(2\right)\)
Từ \(\left(2\right)\)suy ra : \(\orbr{\begin{cases}\frac{x_1}{3}=-2\\\frac{y_2}{7}=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x_1=-6\\y_2=-14\end{cases}}\)
Câu b x2 = 3(tính rồi nhé,sửa câu đó lại nhé),phải tính x1 và y2 mới đúng.
Với x và y là hai đại lượng tỉ lệ nghịch nên x 1 y 1 = x 2 y 2 mà x 1 = 2 , x 2 = 5 và y 1 + y 2 = 21 .
Do đó 2 y 1 = 5 y 2 ⇒ y 1 5 = y 2 2
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
x và y đại lượng tỉ lệ nghịch
x1x2=y2y1hay x1 và x2 ta có:
23=y2y1⇒y13=y22
Mà y12+y22=52
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
y13=y22=y12+y2232+22=5213=4
⇒y13=4⇒y1=12
⇒y22=4⇒y2=8
ta có x=a/y
nên x1+x2=a/y1+y2
hay7=a/21
a=7*21=147