K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2022

hi

love

15 tháng 1 2022

Giải thích các bước giải:

MO là t.p.g. của AMBˆAMB^

⇒AMOˆ=BMOˆ=AMBˆ2=450⇒AMO^=BMO^=AMB^2=450

⇒ΔAMO−và−ΔBMO⇒ΔAMO−và−ΔBMO vuông cân

=> OA = AM = MB = BO

=> OAMB là h.thoi có AMBˆ=900AMB^=900

=> OAMB là h.v.

b)

PMPQ=MP+MQ+PQPMPQ=MP+MQ+PQ

=(MP+PC)+(MQ+QC)=(MP+PC)+(MQ+QC)

=(MP+PA)+(MQ+QB)=(MP+PA)+(MQ+QB)

=MA+MB=MA+MB

=2OA=2OA

=2R=2R

c)

OP−là−t.p.g.−của−AOCˆOP−là−t.p.g.−của−AOC^

⇒COPˆ=12AOCˆ⇒COP^=12AOC^ (1)

OQ−là−t.p.g.−của−BOCˆOQ−là−t.p.g.−của−BOC^

⇒COQˆ=12BOCˆ⇒COQ^=12BOC^ (2)

Cộng theo vế của (1) và (2), ta có:

COPˆ+COQˆ=12(AOCˆ+BOCˆ)=12AOBˆCOP^+COQ^=12(AOC^+BOC^)=12AOB^

⇒POQˆ=450

Giải thích các bước giải:

MO là t.p.g. của AMBˆAMB^

⇒AMOˆ=BMOˆ=AMBˆ2=450⇒AMO^=BMO^=AMB^2=450

⇒ΔAMO−và−ΔBMO⇒ΔAMO−và−ΔBMO vuông cân

=> OA = AM = MB = BO

=> OAMB là h.thoi có AMBˆ=900AMB^=900

=> OAMB là h.v.

b)

PMPQ=MP+MQ+PQPMPQ=MP+MQ+PQ

=(MP+PC)+(MQ+QC)=(MP+PC)+(MQ+QC)

=(MP+PA)+(MQ+QB)=(MP+PA)+(MQ+QB)

=MA+MB=MA+MB

=2OA=2OA

=2R=2R

c)

OP−là−t.p.g.−của−AOCˆOP−là−t.p.g.−của−AOC^

⇒COPˆ=12AOCˆ⇒COP^=12AOC^ (1)

OQ−là−t.p.g.−của−BOCˆOQ−là−t.p.g.−của−BOC^

⇒COQˆ=12BOCˆ⇒COQ^=12BOC^ (2)

Cộng theo vế của (1) và (2), ta có:

COPˆ+COQˆ=12(AOCˆ+BOCˆ)=12AOBˆCOP^+COQ^=12(AOC^+BOC^)=12AOB^

⇒POQˆ=450vv

21 tháng 12 2015

CHTT nha bạn !

a: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay ΔAMB cân tại M

hay \(\widehat{AMB}=60^0\)

nên ΔAMB đều

b: Xét (O) có 

NA là tiếp tuyến

NC là tiếp tuyến

Do đó: ON là tia phân giác của góc AOC(1)

Xét (O) có

QC là tiếp tuyến

QB là tiếp tuyến

Do đó: OQ là tia phân giác của góc NOB(2)

Từ (1) và (2) suy ra \(\widehat{NOQ}=\dfrac{1}{2}\cdot120^0=60^0\)

16 tháng 1 2022

Còn câu c thì sao ạ

18 tháng 11 2015

phan hong phuc dễ thì làm hộ nó đi hãy chứng tỏ là một đàn ông chính thực đối với bạn thì dễ đối với nó thì khó thế thì hãy làm đi nếu bài dễ thế này nó ra làm gì đố vui chắc

Bài 7: Cho đường tròn (O; R), điểm M nằm ngoài đường tròn. Từ M kẻ hai tiếp tuyến MA,MB với đường tròn (A, B là các tiếp điểm). Nối MO cắt cung nhỏ AB tại Na) Cho OM = 2R. Tính AON và số đo A NBb) Biết AMB = 36o . Tính góc ở tâm hợp bởi hai bán kính OA, OB.Bài 8: Cho tam giác ABC cân tại A. Vẽ đường tròn tâm O, đường kính BC. Đường tròn (O)cắt AB, AC tương ứng tại M và N.a) Chứng minh các cung nhỏ BM và CN có số...
Đọc tiếp

Bài 7: Cho đường tròn (O; R), điểm M nằm ngoài đường tròn. Từ M kẻ hai tiếp tuyến MA,
MB với đường tròn (A, B là các tiếp điểm). Nối MO cắt cung nhỏ AB tại N
a) Cho OM = 2R. Tính AON và số đo A NB
b) Biết AMB = 36o . Tính góc ở tâm hợp bởi hai bán kính OA, OB.
Bài 8: Cho tam giác ABC cân tại A. Vẽ đường tròn tâm O, đường kính BC. Đường tròn (O)
cắt AB, AC tương ứng tại M và N.
a) Chứng minh các cung nhỏ BM và CN có số đo bằng nhau
b) Tính MON , nếu BAC =40o
Bài 9: Trên cung nhỏ AB của đường tròn (O), cho hai điểm C, D sao cho cung AB được
chia thành ba cung bằng nhau, tức là AC =CD =DB . Bán kính OC và OD cắt dây AB lần
lượt tại E và F.
a) Hãy so sánh các đoạn thẳng AE, EF và FB
b) Chứng minh rằng AB // CD
Cả hình giúp mình nhé! mơn trc nàhihi

1

Bài 7:

a: Xét ΔOAM vuông tại A có 

\(\cos\widehat{AOM}=\dfrac{OA}{OM}=\dfrac{1}{2}\)

nên \(\widehat{AOM}=60^0\)

b: Xét tứ giác OAMB có 

\(\widehat{OAM}+\widehat{OBM}=180^0\)

Do đó: OAMB là tứ giác nội tiếp

Suy ra: \(\widehat{AOB}=180^0-36^0=144^0\)