Cho hai số thực a và b thõa mãn a>b và ab =4. tìm giá trị nhỏ nhất của biểu thức P=\(\frac{a^2+b^2+1}{a-b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)
\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)
\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(b-\frac{b}{2}\right)^2\ge0\)
Hay \(ab\le2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\b=\frac{b}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)
Xét Q^2=(a^2+b^2)^2/(a-b)^2.Đặt a^2+b^2=x thì (a-b)^2=a^2+b^2-2ab=x-4.Do a>b nên x-4>0.
A^2=x^2/x-4=(x^2-16)/x-4+16/(x-4)=x+4+16/x-4=x-4+16/(x-4)+8>=8+8=16(dùng Cô-si cho 2 số)
suy ra A>=4.
Dấu =xảy ra khi x-4=16(x-4)>>>x-4=4>>>x=8>>>a-b=2 và a+b=2 căn 3 >>>tìm ra a và b
Xét Q^2=(a^2+b^2)^2/(a-b)^2.Đặt a^2+b^2=x thì (a-b)^2=a^2+b^2-2ab=x-4.Do a>b nên x-4>0.
A^2=x^2/x-4=(x^2-16)/x-4+16/(x-4)=x+4+16/x-4=x-4+16/(x-4)+8>=8+8=16(dùng Cô-si cho 2 số)
suy ra A>=4.
Dấu =xảy ra khi x-4=16(x-4)>>>x-4=4>>>x=8>>>a-b=2 và a+b=2 căn 3 >>>tìm ra a và b
k cho mk nha $_$
vì (a-1)2 ≥ 0 nên a2 +1 ≥ 2a ∀mọi x (1)
vì (b-1)2 ≥ 0 nên b2 +1 ≥ 2b ∀ mọi x (2)
từ 1 và 2 ⇒ a2+b2 ≥ 2a+2b
⇒ A≥ 2(a+b)=2
dấu''=' xảy ra khi a=b=1/2
Cho a,b là hai số thực thõa mãn a.b>0
Khi đó, giá trị nhỏ nhất của biểu thức Q=(a+b)(1/a+1/b), Qmin=?
(a+b)(1/a+1/b)=1+a/b+b/a+1
=2+(a^2+b^2)/(a*b)
vì a^2+b^2>0; a*b>0
=>Qmin=2
Bạn nhân hai biểu thức rồi dùng bất đẳng thức cô-si.suy ra min=4
p = \(\frac{a^2+b^2-2ab+9}{a-b}\)
= (a-b) + \(\frac{9}{a-b}\)
= (\(\sqrt{a-b}\) - \(\frac{3}{\sqrt{a-b}}\))\(^2\) +6
p lớn nhất= 6 khi \(\sqrt{a-b}\)=\(\frac{3}{\sqrt{a-b}}\)
a- b = 3
mà ab = 4
giải pt bậc 2
có a=4, b=1 hoặc a= -1, b= -4