K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2017

chứng tỏ là hợp số

321.15.27+5.7

110.31+11.27

2 tháng 11 2021

Bài 1:

1) \(9A=3^3+3^5+...+3^{113}\)

\(\Rightarrow8A=9A-A=3^3+3^5+...+3^{113}-3-3^3-...-3^{111}=3^{113}-3\)

\(\Rightarrow A=\dfrac{3^{113}-3}{8}\)

2) \(9B=3^4+3^6+...+3^{202}\)

\(\Rightarrow8B=9B-B=3^4+3^6+...+3^{202}-3^2-3^4-...-3^{200}=3^{202}-3^2=3^{202}-9\)

\(\Rightarrow B=\dfrac{3^{202}-9}{8}\)

3) \(25C=5^3+5^5+...+5^{101}\)

\(\Rightarrow24C=25C-C=5^3+5^5+...+5^{101}-5-5^3-...-5^{99}=5^{101}-5\)

\(\Rightarrow C=\dfrac{5^{101}-5}{24}\)

4) \(25D=5^4+5^6+...+5^{102}\)

\(\Rightarrow24D=25D-D=5^4+5^6+...+5^{102}-5^2-5^4-...-5^{100}=5^{102}-25\)

\(\Rightarrow D=\dfrac{5^{102}-25}{24}\)

2 tháng 11 2021

Bài 2:

a) Gọi d là UCLN(2n+1,n+1)

\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\n+1⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\2n+2⋮d\end{matrix}\right.\)

\(\Rightarrow\left(2n+2\right)-\left(2n+1\right)⋮d\Rightarrow1⋮d\)

Vậy 2n+1 và n+1 là 2 số nguyên tố cùng nhau

\(\Rightarrow\dfrac{2n+1}{n+1}\) là phân số tối giản

b) Gọi d là UCLN(2n+3,3n+4)

\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+4⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+8⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\Rightarrow1⋮d\)

\(\Rightarrow\dfrac{2n+3}{3n+4}\) là phân số tối giản

27 tháng 10 2017

a, A =  5 + 5 2 + 5 3 + . . . + 5 8

= 5(1+5)+ 5 2 (1+5)+ 5 3 (1+5)+...+ 5 7 (1+5)

= 30+5.30+ 5 2 .30+...+ 5 6 .30

= 30.(1+5+ 5 2 +..+ 5 6 )

Vậy A là bội của 30

b, B =  3 + 3 3 + 3 5 + 3 7 + . . . + 3 29

= 3 1 + 3 2 + 3 4 + 3 7 1 + 3 2 + 3 4 +...+ 3 27 1 + 3 2 + 3 4

= 273+273. 3 6 +...+ 3 26 .273

= 273.(1+ 3 6 +...+ 3 26 )

Vậy B là bội của 273

29 tháng 10 2017

12 tháng 10 2023

a) (3⁵ . 3⁷) : 3¹⁰ + 5 . 2⁴ - 7³ : 7

= 3¹² : 3¹⁰ + 5.16 - 7²

= 3² + 80 - 49

= 9 + 31

= 40

b) (7⁵ + 7⁹) . (5⁴ + 5⁶) . (3³.3 - 9²)

= (7⁵ + 7⁹) . (5⁴ + 5⁶) . (81 - 81)

= (7⁵ + 7⁹) . (5⁴ + 5⁶) . 0

= 0

50) \(\sqrt{98-16\sqrt{3}}=4\sqrt{6}-\sqrt{2}\)

51) \(\sqrt{2-\sqrt{3}}=\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{2}}=\dfrac{\sqrt{3}-1}{\sqrt{2}}=\dfrac{\sqrt{6}-\sqrt{2}}{2}\)

52) \(\sqrt{4+\sqrt{15}}=\dfrac{\sqrt{8+2\sqrt{15}}}{\sqrt{2}}=\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}=\dfrac{\sqrt{10}+\sqrt{6}}{2}\)

53) \(\sqrt{5-\sqrt{21}}=\dfrac{\sqrt{10-2\sqrt{21}}}{\sqrt{2}}=\dfrac{\sqrt{14}-\sqrt{6}}{2}\)

54) \(\sqrt{6-\sqrt{35}}=\dfrac{\sqrt{12-2\sqrt{35}}}{\sqrt{2}}=\dfrac{\sqrt{14}-\sqrt{10}}{2}\)

55) \(\sqrt{2+\sqrt{3}}=\dfrac{\sqrt{4+2\sqrt{3}}}{\sqrt{2}}=\dfrac{\sqrt{6}+\sqrt{2}}{2}\)

56) \(\sqrt{4-\sqrt{15}}=\dfrac{\sqrt{8-2\sqrt{15}}}{\sqrt{2}}=\dfrac{\sqrt{10}-\sqrt{6}}{2}\)

21 tháng 1 2023

Can bac 8

3 tháng 9 2023

Ta có:

\(C=5+5^2+5^3+...+5^{2016}\)

\(C=5\cdot\left(1+5+5^2+...+5^{2015}\right)\)

\(\dfrac{C}{5}=1+5+5^2+...+5^{2015}\)

Mà: \(1+5+5^2+...+5^{2015}\) là 1 số nguyên nên

\(\dfrac{C}{5}\) là số nguyên: \(\Rightarrow C\) ⋮ 5

Nên C là hợp số

3 tháng 9 2023

1 số mà mũ bao nhiêu lần đi nữa thì được 1 số sẽ chia hết cho số ban đầu

\(Vì\) \(5;5^2;5^3;5^4;5^5;...5^{2016}\) đều chia hết cho 5

Các số hạng trong 1 tổng đều chia hết cho 1 số thì tổng đó chia hết cho số đã cho

\(\Rightarrow\)\(5+5^2+5^3+5^4+...+5^{2016}⋮5\) và là hợp số

Vậy C là hợp số

4 tháng 10 2022

siuu