K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2020

đánh giá thôi bạn

\(VT=\sqrt{\left(3x+1\right)^2+\left(2x-3\right)^2}+\sqrt{\left(2x-\frac{5}{2}\right)^2+\left(x-\frac{3}{2}\right)^2}+\sqrt{x^2+\left(4x-6\right)^2}\)

\(\ge\sqrt{\left(3x+1\right)^2}+\sqrt{\left(2x-\frac{5}{2}\right)^2}+\sqrt{x^2}=\left|3x+1\right|+\left|2x-\frac{5}{2}\right|+\left|x\right|\)

\(\ge\left|3x+1+2x-\frac{5}{2}+x\right|=\left|6x-\frac{3}{2}\right|\ge6x-\frac{3}{2}\)

Dấu "=" xảy ra khi x = \(\frac{3}{2}\)

\(VP=\frac{1}{2}\left[-2\left(2x-3\right)^2+12x-3\right]\le\frac{1}{2}\left(12x-3\right)=6x-\frac{3}{2}\)

Dấu "=" xảy ra khi x = \(\frac{3}{2}\)

Từ đó suy ra nghiệm phương trình là \(x=\frac{3}{2}\)

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

nhầm

 

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290

14 tháng 6 2019

Ta có:

\(\sqrt{x^2-x+19}+\sqrt{7x^2+8x+13}+\sqrt{13x^2+17x+7}\)

\(=\sqrt{\frac{1}{4}\left(2x-1\right)^2+\frac{75}{4}}+\sqrt{\left(2x-1\right)^2+3\left(x+2\right)^2}+\sqrt{\frac{1}{4}\left(2x-1\right)^2+\frac{3}{4}\left(4x+3\right)^2}\)

\(\ge\sqrt{\frac{75}{4}}+\sqrt{3\left(x+2\right)^2}+\sqrt{\frac{3}{4}\left(4x+3\right)^2}\)

\(=\frac{5\sqrt{3}}{2}+\sqrt{3}\left(x+2\right)+\frac{\sqrt{3}\left(4x+3\right)}{2}=3\sqrt{3}\left(x+2\right)\)

Dấu = xảy ra khi ....

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) \(\sqrt {6{x^2} + 13x + 13}  = 2x + 4\)    

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l}6{x^2} + 13x + 13 = 4{x^2} + 16x + 16\\ \Leftrightarrow 2{x^2} - 3x - 3 = 0\end{array}\)

\( \Leftrightarrow x = \frac{{3 - \sqrt {33} }}{4}\) hoặc \(x = \frac{{3 + \sqrt {33} }}{4}\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy cả 2 giá trị \(x = \frac{{3 - \sqrt {33} }}{4}\) và \(x = \frac{{3 + \sqrt {33} }}{4}\) đều thỏa mãn

Vậy tập nghiệm của phương trình là \(S = \left\{ {\frac{{3 - \sqrt {33} }}{4};\frac{{3 + \sqrt {33} }}{4}} \right\}\)

b) \(\sqrt {2{x^2} + 5x + 3}  =  - 3 - x\)

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l}2{x^2} + 5x + 3 = 9 + 6x + {x^2}\\ \Leftrightarrow {x^2} - x - 6 = 0\end{array}\)

\( \Leftrightarrow x =  - 2\) hoặc \(x = 3\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy không có giá trị nào thỏa mãn

Vậy phương trình vô nghiệm

c) \(\sqrt {3{x^2} - 17x + 23}  = x - 3\)

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l}3{x^2} - 17x + 23 = {x^2} - 6x + 9\\ \Leftrightarrow 2{x^2} - 11x + 14 = 0\end{array}\)

\( \Leftrightarrow x = 2\) hoặc \(x = \frac{7}{2}\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy \(x = \frac{7}{2}\) thỏa mãn

Vậy nghiệm của phương trình là \(x = \frac{7}{2}\)                  

d) \(\sqrt { - {x^2} + 2x + 4}  = x - 2\)

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l} - {x^2} + 2x + 4 = {x^2} - 4x + 4\\ \Leftrightarrow 2{x^2} - 6x = 0\end{array}\)

\( \Leftrightarrow x = 0\) hoặc \(x = 3\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy x=3 thỏa mãn

Vậy nghiệm của phương trình là x=3