Một xạ thủ bắn 20 mũi tên vào một tấm bia. Điểm số ở các lần bắn được cho bởi bảng sau:
7 | 8 | 9 | 9 | 8 | 10 | 10 | 9 | 8 | 10 |
8 | 8 | 9 | 10 | 10 | 7 | 6 | 6 | 9 | 9 |
Xác suất thực nghiệm để xạ thủ bắn được ít nhất 6 lần.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phương pháp:
A, B là các biến cố độc lập thì P ( A . B ) = P ( A ) . P ( B )
Chia bài toán thành các trường hợp:
- Một người bắn trúng và một người bắn không trúng,
- Cả hai người cùng bắn không trúng.
Sau đó áp dụng quy tắc cộng.
Cách giải:
Xác suất để xạ thủ thứ nhất bắn không trúng bia là: 1 − 1 2 = 1 2 .
Xác suất để xạ thủ thứ nhất bắn không trúng bia là: 1 − 1 3 = 2 3 .
Gọi biến cố A:”Có ít nhất một xạ thủ không bắn trúng bia ”.
Khi đó biến cố A có 3 khả năng xảy ra:
+) Xác suất người thứ nhất bắn trúng bia, người thứ hai không bắn trúng bia: 1 2 . 2 3 = 1 3 .
+) Xác suất người thứ nhất không bắn trúng bia, người thứ hai bắn trúng bia: 1 2 . 1 3 = 1 6 .
+) Xác suất cả hai người đều bắn không trúng bia:
Khi đó P ( A ) = 1 2 . 2 3 + 1 2 . 1 3 + 1 2 . 1 3 = 2 3 .
Đáp án D
Phương pháp:
A, B là các biến cố độc lập thì P(A.B) = P(A).P(B)
Chia bài toán thành các trường hợp:
- Một người bắn trúng và một người bắn không trúng,
- Cả hai người cùng bắn không trúng.
Sau đó áp dụng quy tắc cộng.
Cách giải:
Xác suất để xạ thủ thứ nhất bắn không trúng bia là: 1 - 1 2 = 1 2
Xác suất để xạ thủ thứ nhất bắn không trúng bia là: 1 - 1 3 = 2 3
Gọi biến cố A:”Có ít nhất một xạ thủ không bắn trúng bia ”.
Khi đó biến cố A có 3 khả năng xảy ra:
+) Xác suất người thứ nhất bắn trúng bia, người thứ hai không bắn trúng bia: 1 2 . 2 3 = 1 3
+) Xác suất người thứ nhất không bắn trúng bia, người thứ hai bắn trúng bia: 1 2 . 1 3 = 1 6
+) Xác suất cả hai người đều bắn không trúng bia:
Khi đó
Đáp án B.
Xác suất để xạ thủ thứ nhất bắn không trúng bia là:
Xác suất để xạ thủ thứ hai bắn không trúng bia là:
Gọi biến cố A:Có ít nhất một xạ thủ không bắn trúng bia. Khi có biến cố A có 3 khả năng xảy ra:
* Xác suất người thứ nhất bắn trúng bia, người thứ hai không bắn trúng bia là
* Xác suất người thứ nhất không bắn trúng bia, người thứ hai bắn trúng bia là .
* Xác suất cả hai người đều bắn không trúng bia là .
Vậy .
Đáp án B.
Xác suất để xạ thủ thứ nhất bắn không trúng bia là: 1 − 1 2 = 1 2
Xác suất để xạ thủ thứ hai bắn không trúng bia là: 1 − 1 3 = 2 3
Gọi biến cố A: Có ít nhất một xạ thủ không bắn trúng bia . Khi có biến cố A có 3 khả năng xảy ra:
* Xác suất người thứ nhất bắn trúng bia, người thứ hai không bắn trúng bia là 1 2 . 2 3 = 1 3
* Xác suất người thứ nhất không bắn trúng bia, người thứ hai bắn trúng bia là 1 2 . 1 3 = 1 6
* Xác suất cả hai người đều bắn không trúng bia là 1 2 . 2 3 = 1 3
Gọi A là biến cố “Xạ thủ thứ i bắn trúng bia”, i=1,2
TH1. Xạ thủ thứ nhất bắn trúng, xạ thủ 2 bắn trượt thì xác suất là:
P A 1 = 1 2 . 1 − 1 3
TH2. Xạ thủ thứ nhất bắn trượt, xạ thủ thứ 2 bắn trúng thì xác suất là:
P A 2 = 1 − 1 2 . 1 3
TH3. Cả 2 xạ thủ đều bắn trượt
P A 3 = 1 − 1 2 . 1 − 1 3
Xác suất của biến cố Y là:
P Y = P A 1 + P A 2 + P A 3 = 5 6
Đáp án. D
x ≈ y = 8 , 4 đ i ể m , s 1 2 > s 2 2 , như vậy mức độ phân tán cuẩ các điểm số (so với số trung bình) của xạ thủ A là bé hơn. Vì vậy, trong lần tập bắn này, xạ thủ A bắn chụm hơn.
Sô lần bắn ít nhất được 6 lần là: 2
Xác suất thực nghiệm để xạ thủ bắn được ít nhất 6 lần :
\(\dfrac{2}{20}=\dfrac{1}{10}\)