K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
26 tháng 5 2022

Lấy \(D\) đối xứng với \(A\) qua \(I\)

Khi đó \(I\) là trung điểm của \(AD\).

\(BC\) cắt \(AD\) tại trung điểm mỗi đường suy ra \(ACDB\) là hình bình hành. 

Ta có: \(AB+AC=AB+BC>AD=2AI\) (bất đẳng thức tam giác trong tam giác \(ABD\)

Suy ra đpcm. 

2 tháng 4 2020

a) Ta có

+)AM=AB-BM=6-3,75=2,25

+)MN//BC => \(\frac{AN}{AC}=\frac{AM}{AB}\)=> \(\frac{AN}{8}=\frac{2,25}{6}=\frac{3}{8}\)

=> AN=3(cm)

CN=AC-AN=8-3=5(cm)

b) +)MK//BI => \(\frac{MK}{BI}=\frac{AK}{AI}\left(1\right)\)

+) NK//CI => \(\frac{NK}{CI}=\frac{AK}{AI}\left(2\right)\)

(1)(2) => \(\frac{MK}{BI}=\frac{NK}{CI}\)mà MK=NK (K là trung điểm MN)

=> BI=CI => I là trung điểm BC

c) \(\Delta\)ABC vuông tại A

=> BC2=AB2+AC2=62+82=102 (Định lý Pytago)

=> BC=10cm

Ta có: \(\hept{\begin{cases}\frac{AN}{CN}=\frac{3}{5}\\\frac{AB}{BC}=\frac{6}{10}=\frac{3}{5}\end{cases}\Rightarrow\frac{AN}{CN}=\frac{AB}{AC}=\frac{3}{5}}\)

=> BN là phân giác \(\widehat{ABC}\)

https://olm.vn/hoi-dap/detail/5736377385.html

bn vào đi ~

17 tháng 12 2014

a)xét tam giác AMB và tam giác AMC

         AB=AC ( giả thiết )

         AM cạnh chung        

        BM = CM (M là trung điểm cạnh BC)

 Vậy tam giác AMB = tam giác AMC

 

        

17 tháng 12 2014

a. Chứng minh tam giác AMB = tam giác AMC :

AM là cạnh chung 

AB = AC ( giả thiết )

BM = MC ( vì M là trung điểm của tam giác ABC )

Xuy ra : tam giác AMB = tam giác AMC

2 tháng 12 2021

a) Ta có: AD=AE 

=> Tam giác ADE cân tại A

\(\Rightarrow\widehat{ADE}=\dfrac{180^0-\widehat{A}}{2}\)

Mà \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Tam giác ABC cân tại A)

=> \(\widehat{ADE}=\widehat{ABC}\)

Mà 2 góc này đồng vị

=> DE//BC

b) Xét tam giác ABI và tam giác ACI

AB=AC

AI chung

BI=IC

=> ΔABI=ΔACI

=> \(\widehat{AIB}=\widehat{AIC}=180^0:2=90^0\Rightarrow AI\perp BC\)

=> AI là đường trung trực của BC