K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2016

a) x=2, y=8

b) x=3; y=0

chúc bn học gioi!

nhaE@@

hihi^__^

5 tháng 2 2017

a, x+ 6 =y( x-1) 

x+ 6 = xy - y 

=> x- xy + y = 6 

........

đến đây thì tớ chỉu rồi 

chỉ tìm đc x,y tổng quát chứ không cụ thể số được

5 tháng 2 2017

k minh minh giai

5 tháng 11 2017

\(\frac{x}{5}=\frac{y}{3}\)và x2-y2=4(x,y>0)

\(\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{25-9}=\frac{4}{16}=\frac{1}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\Rightarrow\frac{x^2}{25}=\frac{1}{4}\Rightarrow x^2=\frac{25}{4}\Rightarrow x=\frac{5}{2}\)

\(\Rightarrow\frac{y^2}{9}=\frac{1}{4}\Rightarrow y^2=\frac{9}{4}\Rightarrow y=\frac{3}{2}\)

Vậy x =\(\frac{5}{2}\)và y =\(\frac{3}{2}\)

5 tháng 11 2017

Ta có:

\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x^2}{3}=\frac{y^2}{5}\)

Áp dụng dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{3^2}=\frac{y^2}{5^2}=\frac{x^2-y^2}{3^2-5^2}=\frac{-4}{-16}=\frac{1}{4}\)

\(\Rightarrow\frac{x^2}{3^2}=\frac{1}{4}\Rightarrow x=\sqrt{3^2.\frac{1}{4}}=\frac{3}{2}\)

\(\frac{y^2}{5^2}=\frac{1}{4}\Rightarrow y=\sqrt{5^2.\frac{1}{4}}=\frac{5}{2}\)

11 tháng 3 2018

Ta có : 

\(\frac{x+3}{y+5}=\frac{3}{5}\)\(\Leftrightarrow\)\(\frac{x+3}{3}=\frac{y+5}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+3+y+5}{3+5}=\frac{\left(x+y\right)+\left(3+5\right)}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)

Do đó : 

\(\frac{x+3}{3}=3\)\(\Rightarrow\)\(x=3.3-3=9-3=6\)

\(\frac{y+5}{5}=3\)\(\Rightarrow\)\(y=3.5-5=10\)

Vậy \(x=6\) và \(y=10\)

Chúc bạn học tốt ~

11 tháng 3 2018

lp 6 thì dãy tỉ số = nhau cái gì :))

\(\frac{x+3}{y+5}=\frac{3}{5}\)

\(\Rightarrow\left(x+3\right)\cdot5=\left(y+5\right)\cdot3\)

\(\Rightarrow5x+15=3y+15\)

\(\Rightarrow5x=3y\)

\(\Rightarrow\frac{x}{y}=\frac{3}{5}\) ; mà x+y = 16

\(\Rightarrow\hept{\begin{cases}x=16:\left(3+5\right)\cdot3=6\\y=16:\left(3+5\right)\cdot5=10\end{cases}}\)

14 tháng 7 2019

Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) => \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

   \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}=\frac{x^2+y^2-2z^2}{4+9-32}=\frac{76}{-19}=-4\)

=> \(\hept{\begin{cases}\frac{x^2}{4}=-4\\\frac{y^2}{9}=-4\\\frac{2z^2}{32}=-4\end{cases}}\) => \(\hept{\begin{cases}x^2=-4.4=-16\\y^2=-4.9=-36\\z^2=\left(-4.32\right):2=-64\end{cases}}\) => ko có giá trị x,y,z thõa mãn

Ta có: \(-2x=5y\) => \(\frac{x}{5}=\frac{y}{-2}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

        \(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5-2}=\frac{30}{3}=10\)

=> \(\hept{\begin{cases}\frac{x}{5}=10\\\frac{y}{-2}=10\end{cases}}\) => \(\hept{\begin{cases}x=10.5=50\\y=10.\left(-2\right)=-20\end{cases}}\)

Vậy ..

14 tháng 7 2019

\(\frac{x}{-3}=\frac{y}{-7}\Rightarrow\frac{2x}{-6}=\frac{4y}{-28}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{-6}=\frac{4y}{-28}=\frac{2x+4y}{(-6)+(-28)}=\frac{68}{-34}=-2\)

Vậy : \(\hept{\begin{cases}\frac{x}{-3}=-2\\\frac{y}{-7}=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=14\end{cases}}\)

12 tháng 4 2022

\(A=\dfrac{x}{\left(x+2022\right)^2}=\dfrac{x}{x^2+4044x+2022^2}=\dfrac{1}{x+4044+\dfrac{2022^2}{x}}=\dfrac{1}{\left(x+\dfrac{2022^2}{x}\right)+4044}\le\dfrac{1}{2.\sqrt{x}.\sqrt{\dfrac{2022^2}{x}}+4044}=\dfrac{1}{2..\sqrt{\dfrac{x.2022^2}{x}}+4044}=\dfrac{1}{4044+4044}=\dfrac{1}{8088}\)-\(A_{max}=\dfrac{1}{8088}\Leftrightarrow x=2022\)

27 tháng 12 2016

x=5 

y=3

4 tháng 1 2017

X=1

Y=-6

x=2

y=3

AH
Akai Haruma
Giáo viên
18 tháng 6 2021

Lời giải:
a.

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=\frac{x-y}{2-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30\)

\(\Rightarrow \left\{\begin{matrix} x=60\\ y=45\\ z=40\end{matrix}\right.\)

b)

Từ đkđb suy ra \(\frac{10x}{1}=\frac{5y}{\frac{1}{3}}=\frac{z}{\frac{1}{6}}=\frac{10x-5y+z}{1-\frac{1}{3}+\frac{1}{6}}=\frac{25}{\frac{5}{6}}=30\)

\(\Rightarrow \left\{\begin{matrix} x=3\\ y=2\\ z=5\end{matrix}\right.\)

 

28 tháng 1 2019

Mấy bài này khó :( nghĩ được bài nào làm bài đấy nhé,  bạn thông cảm

a, Dùng phương pháp kẹp 

Do \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

\(\Rightarrow x^3+x^2+x+1>x^3\)

\(\Rightarrow y^3>x^3\)

\(\Rightarrow y>x\)(1)

Xét hiệu \(\left(x+2\right)^3-y^3=x^3+6x^2+12x+8-y^3\)

                                              \(=x^3+6x^2+12x+8-x^3-x^2-x-1\)

                                              \(=5x^2+11x+7\)

                                              \(=5\left(x+\frac{11}{10}\right)^2+\frac{19}{20}>0\forall x\)

\(\Rightarrow\left(x+2\right)^3>y^3\)

\(\Rightarrow x+2>y\)(2)

Từ \(\left(1\right)\&\left(2\right)\Rightarrow x< y< x+2\)

Mà \(x;y\inℤ\Rightarrow y=x+1\)

Thế vào pt ban đầu đc \(x^3+x^2+x+1=\left(x+1\right)^3\)

                            \(\Leftrightarrow x^3+x^2+x+1=x^3+3x^2+3x+1\)

                           \(\Leftrightarrow2x^2+2x=0\)

                          \(\Leftrightarrow2x\left(x+1\right)=0\)

                            \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(tm\right)}\)

*Với x = 0 => y= 1

*Với x = -1 => y = 0

Vậy ...

29 tháng 1 2019

Ailamfgiups mình caaub,c, d với