Tìm số tự nhiên nhỏ nhất mà khi chia số đó cho 4; 5; 6; thì có số dư tương ứng là 3; 4; 5 và khi chia cho 7 thì ko có dư.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi số cần tìm là $a$. Theo đề thì:
$a-3\vdots 70,210,350$
$\Rightarrow a-3\vdots BCNN(70,210,350)$
$\Rightarrow a-3\vdots 1050$
$\Rightarrow a=1050k+3$ với $k$ là số tự nhiên
Vì $a$ có 4 chữ số nên $1050k+3>999$
$\Rightarrow k>0$
Để $a$ nhỏ nhất thì $k$ nhỏ nhất. $\Rightarrow k=1$
Khi đó: $a=1050.1+3=1053$
Gọi số tự nhiên cần tìm có dạng abcd ( \(0< a\le9\) , \(0\le b,c,d\le9\) )
Do số cần tìm khi chia cho 70 , 210 , 350 có cùng số dư là 3 nên
=> ( abcd - 3 ) \(⋮\) 70 , 210 , 350
=> ( abcd -3 ) \(⋮\) ƯCLN( 70 ; 210 ; 350)
70 = 2 . 5 . 7
210 = 2 . 3 . 5 . 7
350 = 2 . \(5^2\) . 7
=> ƯCLN ( 70;210;350) = 2 . 3 . \(5^2\) . 7 = 1050
=> abcd -3 chia hết 1050
mà abcd là số nhỏ nhất có 4 chữ số
=> abcd -3 = 1050
=> abcd = 1053
vậy số cần tìm là 1053
Gọi số cần tìm là a.Theo đề, ta có:
a:8 dư 5, a:10 dư 7 \(\Rightarrow\) a+3 \(⋮\) cho 5,7( a nhỏ nhất)
\(\Rightarrow\) a+3\(\in\)ƯCLN (5,7) \(\Rightarrow\) a+3=35 \(\Rightarrow\) a=32
Vậy số đó thêm vào 1 đơn vị thì chia hết cho cả 4 ; 5 ;6
Số nhỏ nhất chia hết cho 4 ; 5 ; 6 là 60 .
Vậy số đó là : 60 - 1 = 59
59 chia 7 dư 3 nên số thỏa mãn đề bài là 59
Số đó là 59