Cho a,b,c,d >0. Chứng minh:
1. \(\frac{a}{2a+b+c}\)+\(\frac{b}{a+2b+c}\)+\(\frac{c}{a+b+2c}\)\(\ge\)\(\frac{3}{4}\)
2. \(\frac{a}{b+2c+3d}\)+\(\frac{b}{c+2d+3a}\)+\(\frac{c}{d+2a+3b}\)+\(\frac{d}{a+2b+3c}\)\(\ge\)\(\frac{2}{3}\)
Giúp mình với, mình đang cần gấp. Cảm ơn
Bài 2:
Áp dụng Bdt Cauchy-Schwarz dạng engel, ta có
\(VT\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\)
Mà theo Bđt cosi
\(\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\)
\(=\frac{\left(a+b+c+d\right)^2}{2\left[\left(a+b\right)\left(c+d\right)+\left(a+c\right)\left(b+d\right)+\left(a+d\right)\left(b+c\right)\right]}\ge\frac{2}{3}\)